用单个机器人手抓住各种大小和形状的各种物体是一项挑战。为了解决这个问题,我们提出了一只名为“ F3手”的新机器人手,受人食指和拇指的复杂运动的启发。 F3手试图通过将平行运动手指和旋转运动手指与自适应功能结合在一起来实现复杂的人类样运动。为了确认我们的手的性能,我们将其附加到移动操纵器 - 丰田人支持机器人(HSR),并进行了掌握实验。在我们的结果中,我们表明它能够掌握所有YCB对象(总共82个),包括外径的垫圈小至6.4mm。我们还构建了一个用于直观操作的系统,并使用3D鼠标掌握了另外24个对象,包括小牙签和纸夹以及大型投手和饼干盒。即使在不精确的控制和位置偏移量下,F3手也能够在抓住98%的成功率方面取得成功率。此外,由于手指的适应性功能,我们展示了F3手的特征,这些特征促进了在理想的姿势中抓住诸如草莓之类的软物体。
translated by 谷歌翻译
The field of robotics, and more especially humanoid robotics, has several established competitions with research oriented goals in mind. Challenging the robots in a handful of tasks, these competitions provide a way to gauge the state of the art in robotic design, as well as an indicator for how far we are from reaching human performance. The most notable competitions are RoboCup, which has the long-term goal of competing against a real human team in 2050, and the FIRA HuroCup league, in which humanoid robots have to perform tasks based on actual Olympic events. Having robots compete against humans under the same rules is a challenging goal, and, we believe that it is in the sport of archery that humanoid robots have the most potential to achieve it in the near future. In this work, we perform a first step in this direction. We present a humanoid robot that is capable of gripping, drawing and shooting a recurve bow at a target 10 meters away with considerable accuracy. Additionally, we show that it is also capable of shooting distances of over 50 meters.
translated by 谷歌翻译
State-of-the-art brain tumor segmentation is based on deep learning models applied to multi-modal MRIs. Currently, these models are trained on images after a preprocessing stage that involves registration, interpolation, brain extraction (BE, also known as skull-stripping) and manual correction by an expert. However, for clinical practice, this last step is tedious and time-consuming and, therefore, not always feasible, resulting in skull-stripping faults that can negatively impact the tumor segmentation quality. Still, the extent of this impact has never been measured for any of the many different BE methods available. In this work, we propose an automatic brain tumor segmentation pipeline and evaluate its performance with multiple BE methods. Our experiments show that the choice of a BE method can compromise up to 15.7% of the tumor segmentation performance. Moreover, we propose training and testing tumor segmentation models on non-skull-stripped images, effectively discarding the BE step from the pipeline. Our results show that this approach leads to a competitive performance at a fraction of the time. We conclude that, in contrast to the current paradigm, training tumor segmentation models on non-skull-stripped images can be the best option when high performance in clinical practice is desired.
translated by 谷歌翻译
Bi-encoders and cross-encoders are widely used in many state-of-the-art retrieval pipelines. In this work we study the generalization ability of these two types of architectures on a wide range of parameter count on both in-domain and out-of-domain scenarios. We find that the number of parameters and early query-document interactions of cross-encoders play a significant role in the generalization ability of retrieval models. Our experiments show that increasing model size results in marginal gains on in-domain test sets, but much larger gains in new domains never seen during fine-tuning. Furthermore, we show that cross-encoders largely outperform bi-encoders of similar size in several tasks. In the BEIR benchmark, our largest cross-encoder surpasses a state-of-the-art bi-encoder by more than 4 average points. Finally, we show that using bi-encoders as first-stage retrievers provides no gains in comparison to a simpler retriever such as BM25 on out-of-domain tasks. The code is available at https://github.com/guilhermemr04/scaling-zero-shot-retrieval.git
translated by 谷歌翻译
Besides accuracy, recent studies on machine learning models have been addressing the question on how the obtained results can be interpreted. Indeed, while complex machine learning models are able to provide very good results in terms of accuracy even in challenging applications, it is difficult to interpret them. Aiming at providing some interpretability for such models, one of the most famous methods, called SHAP, borrows the Shapley value concept from game theory in order to locally explain the predicted outcome of an instance of interest. As the SHAP values calculation needs previous computations on all possible coalitions of attributes, its computational cost can be very high. Therefore, a SHAP-based method called Kernel SHAP adopts an efficient strategy that approximate such values with less computational effort. In this paper, we also address local interpretability in machine learning based on Shapley values. Firstly, we provide a straightforward formulation of a SHAP-based method for local interpretability by using the Choquet integral, which leads to both Shapley values and Shapley interaction indices. Moreover, we also adopt the concept of $k$-additive games from game theory, which contributes to reduce the computational effort when estimating the SHAP values. The obtained results attest that our proposal needs less computations on coalitions of attributes to approximate the SHAP values.
translated by 谷歌翻译
道路车辙是严重的道路障碍,可能导致早期和昂贵的维护成本的道路过早失败。在过去的几年中,正在积极进行使用图像处理技术和深度学习的道路损害检测研究。但是,这些研究主要集中在检测裂缝,坑洼及其变体上。很少有关于探测道路的研究。本文提出了一个新颖的道路车辙数据集,其中包括949张图像,并提供对象级别和像素级注释。部署了对象检测模型和语义分割模型,以检测所提出的数据集上的道路插道,并对模型预测进行了定量和定性分析,以评估模型性能并确定使用拟议方法检测道路插道时面临的挑战。对象检测模型Yolox-S实现了61.6%的Map@iou = 0.5,语义分割模型PSPNET(RESNET-50)达到54.69,精度为72.67,从而为将来的类似工作提供了基准的准确性。拟议的道路车辙数据集和我们的研究结果将有助于加速使用深度学习发现道路车辙的研究。
translated by 谷歌翻译
数据文章介绍了路线损坏数据集RDD2022,其中包括来自六个国家,日本,印度,捷克共和国,挪威,美国和中国的47,420条道路图像。图像已注释了超过55,000个道路损坏的实例。数据集中捕获了四种类型的道路损坏,即纵向裂缝,横向裂纹,鳄鱼裂纹和坑洼。设想注释的数据集用于开发基于深度学习的方法以自动检测和对道路损害进行分类。该数据集已作为基于人群传感的道路伤害检测挑战(CRDDC2022)的一部分发布。 CRDDC2022挑战邀请了来自全球的研究人员提出解决方案,以在多个国家 /地区自动道路损害检测。市政当局和道路机构可以使用RDD2022数据集,并使用RDD2022培训的模型用于低成本自动监测道路状况。此外,计算机视觉和机器学习研究人员可能会使用数据集对其他类型的其他基于图像的应用程序(分类,对象检测等)进行不同算法的性能。
translated by 谷歌翻译
在机器学习中,使用算法 - 不足的方法是一个新兴领域,用于解释单个特征对预测结果的贡献。尽管重点放在解释预测本身上,但已经做了一些解释这些模型的鲁棒性,即每个功能如何有助于实现这种鲁棒性。在本文中,我们建议使用沙普利值来解释每个特征对模型鲁棒性的贡献,该功能以接收器操作特性(ROC)曲线和ROC曲线(AUC)下的面积来衡量。在一个说明性示例的帮助下,我们证明了解释ROC曲线的拟议思想,并可以看到这些曲线中的不确定性。对于不平衡的数据集,使用Precision-Recall曲线(PRC)被认为更合适,因此我们还演示了如何借助Shapley值解释PRC。
translated by 谷歌翻译
通用近似定理断言,单个隐藏层神经网络在紧凑型集合上具有任何所需的精度,可以近似连续函数。作为存在的结果,通用近似定理支持在各种应用程序中使用神经网络,包括回归和分类任务。通用近似定理不仅限于实现的神经网络,而且还具有复杂,季节,Tessarines和Clifford值的神经网络。本文扩展了广泛的超复杂性神经网络的通用近似定理。确切地说,我们首先介绍非分类超复杂代数的概念。复数,偶数和苔丝是非分类超复合代数的示例。然后,我们陈述了在非分类代数上定义的超复合值的神经网络的通用近似定理。
translated by 谷歌翻译
我们介绍MR-NET,这是一种用于多分辨率神经网络的一般体系结构,也是基于此体系结构进行成像应用的框架。我们的基于坐标的网络在空间和规模上都是连续的,因为它们由多个阶段组成,这些阶段逐渐增加了更细节。除此之外,它们是一个紧凑而有效的表示。我们展示了多分辨率图像表示以及用于纹理放大和缩小以及抗脉化的应用。
translated by 谷歌翻译