通用形态(UNIMORPH)项目是一项合作的努力,可为数百种世界语言实例化覆盖范围的标准化形态拐角。该项目包括两个主要的推力:一种无独立的特征架构,用于丰富的形态注释,并以各种语言意识到该模式的各种语言的带注释数据的类型级别资源。本文介绍了过去几年对几个方面的扩张和改进(自McCarthy等人(2020年)以来)。众多语言学家的合作努力增加了67种新语言,其中包括30种濒危语言。我们已经对提取管道进行了一些改进,以解决一些问题,例如缺少性别和马克龙信息。我们还修改了模式,使用了形态学现象所需的层次结构,例如多肢体协议和案例堆叠,同时添加了一些缺失的形态特征,以使模式更具包容性。鉴于上一个UniMorph版本,我们还通过16种语言的词素分割增强了数据库。最后,这个新版本通过通过代表来自metphynet的派生过程的实例丰富数据和注释模式来推动将衍生物形态纳入UniMorph中。
translated by 谷歌翻译
从现实世界中的图像(例如果园)中估算出准确可靠的水果和蔬菜计数,这是一个充满挑战的问题,最近引起了最近的关注。收获前估算水果计数为物流规划提供了有用的信息。尽管在水果检测方面已取得了很大进展,但估计实际计数仍然具有挑战性。实际上,水果通常聚集在一起。因此,仅检测水果的方法无法提供一般解决方案来估计准确的水果计数。此外,在园艺研究中,而不是单一的屈服估计中,更细致的信息,例如每个集群的苹果数量分布。在这项工作中,我们将图像从图像计算为多类分类问题,并通过训练卷积神经网络来解决它。我们首先评估方法的每图像精度,并将其与基于四个测试数据集的高斯混合模型的最先进方法进行比较。即使针对每个数据集专门调整了基于高斯混合模型的方法的参数,但我们的网络在四分之三数据集中的三个数据集中的表现最高为94 \%精度。接下来,我们使用该方法来估计两个数据集的产量,我们为此提供了真理。我们的方法达到了96-97 \%精度。有关更多详细信息,请在此处查看我们的视频:https://www.youtube.com/watch?v=le0mb5p-syc} {https://www.youtube.com/watch?v=le0mb5p-syc。
translated by 谷歌翻译
我们提出了一个通用框架,用于使用安装在机器人操纵器上的相机在农场设置中准确定位传感器和最终效应器。我们的主要贡献是一种基于新的且可靠的功能跟踪算法的视觉致密伺服方法。在苹果园进行的现场实验的结果表明,即使在环境影响下,我们的方法也会收敛到给定的终止标准,例如强风,不同的照明条件和目标对象的部分遮挡。此外,我们通过实验表明,对于广泛的初始条件,系统会收敛到所需的视图。这种方法为新应用提供了可能性,例如自动化水果检查,水果采摘或精确的农药应用。
translated by 谷歌翻译
谷仓(基准自动驾驶机器人导航)挑战在宾夕法尼亚州费城的2022年IEEE国际机器人和自动化国际会议(ICRA 2022)举行。挑战的目的是评估最先进的自动地面导航系统,以安全有效的方式将机器人通过高度约束的环境移动。具体而言,任务是将标准化的差分驱动地面机器人从预定义的开始位置导航到目标位置,而不会与模拟和现实世界中的任何障碍相撞。来自世界各地的五支球队参加了合格的模拟比赛,其中三支受邀在费城会议中心的一组身体障碍课程中相互竞争。竞争结果表明,尽管表面上显得简单,即使对于经验丰富的机器人主义者来说,在高度约束空间中的自主地面导航实际上远非解决问题。在本文中,我们讨论了挑战,前三名获胜团队所使用的方法以及学到的教训以指导未来的研究。
translated by 谷歌翻译
现有的数据集用于训练窄带射频(RF)信号分类的深度学习模型缺乏信号类型和渠道障碍的多样性,无法充分评估现实世界中的模型性能。我们介绍了SIG53数据集,该数据集由500万个合成生成的样品组成,来自53个不同的信号类别和专业选择的损害。我们还介绍了Torchsig,这是一种信号处理机学习工具包,可用于生成此数据集。 Torchsig结合了视觉域共有的数据处理原理,它旨在作为未来信号机器学习研究的开源基础。使用SIG53数据集的初始实验是使用最新技术(SOTA)卷积神经网络(Convnets)和变压器进行的。这些实验揭示了变形金刚在不需要额外正规化或转向师教师的情况下优于转向器,这与视觉领域的结果相反。其他实验表明,火炬的特定于域的数据增强功能有助于模型培训,最终使模型性能受益。最后,Torchsig在训练时支持即时的合成数据创建,从而可以通过几乎无限的数据集实现大规模训练会话。
translated by 谷歌翻译
人类行为越来越多地在移动设备上捕获,从而增加了对自动人类活动识别的兴趣。但是,现有数据集通常由脚本运动组成。我们的长期目标是在自然环境中执行移动活动识别。我们收集一个数据集,以支持与下游任务(例如健康监测和干预)相关的活动类别。由于人类行为中存在巨大的差异,因此我们收集了两个不同年龄段的许多参与者的数据。由于人类行为会随着时间的流逝而改变,因此我们还在一个月的时间内收集参与者的数据以捕捉时间漂移。我们假设移动活动识别可以受益于无监督的域适应算法。为了满足这一需求并检验这一假设,我们分析了整个人和整个时间的域适应性的性能。然后,我们通过对比度学习来增强无监督的域适应性,并在可用标签比例时进行弱监督。该数据集可在https://github.com/wsu-casas/smartwatch-data上找到
translated by 谷歌翻译
在本文中,我们介绍了RISP,这是一种减少的指令尖峰处理器。虽然大多数尖峰神经处理器都是基于大脑或大脑的概念,但我们为简化而不是复杂的尖峰处理器提供了案例。因此,它具有离散的集成周期,可配置的泄漏等等。我们介绍了RISP的计算模型,并突出了其简单性的好处。我们展示了它如何帮助开发用于简单计算任务的手部神经网络,并详细介绍如何使用它来简化使用更复杂的机器学习技术构建的神经网络,并演示其与其他尖峰神经过程相似的性能。
translated by 谷歌翻译
对机器人在现实世界中的准确控制需要一个控制系统,该控制系统能够考虑机器人与环境的动力学相互作用。在高速度下,机器人对这些运动动力学相互作用的运动依赖性变得更加明显,使高速,准确的机器人控制一个具有挑战性的问题。先前的工作表明,学习机器人的逆动力动力学(IKD)可能有助于高速机器人控制。但是,学习的逆运动动力学模型只能应用于有限的控制问题类别,不同的控制问题需要学习新的IKD模型。在这项工作中,我们提出了一种新的公式,用于精确,高速机器人控制,该配方利用了学习的前进运动动力学(FKD)模型和非线性最小二乘优化。从公式的本质上讲,这种方法可以扩展到各种各样的控制问题,而无需重新培训新模型。我们证明了这种方法在高速上准确控制刻度的十分之一机器人车的能力,并显示出比基线相比的结果。
translated by 谷歌翻译
世界上最大的可可生产国C \^ote d'Ivoire and Ghana占全球可可生产的三分之二。在这两个国家,可可都是多年生作物,为近200万农民提供收入。然而,缺少可可种植区域的精确地图,阻碍了保护区,生产和产量的准确量化,并限制了可用于改善可持续性治理的信息。在这里,我们将可可种植园数据与公开可用的卫星图像结合在深度学习框架中,并为两国的可可种植园创建高分辨率地图,并被现场验证。我们的结果表明,可可栽培是C \^ote d'Ivoire和Ghane的保护区中森林损失的37%以上和13%的潜在驱动因素,该官员报告大大低估了种植的地区,最高40%在加纳。这些地图是提高可可生产地区保护和经济发展的关键基础。
translated by 谷歌翻译
高速偏离地面车辆的高速偏离道路导航的主要挑战之一是,车辆地形相互作用的动力动力学会根据地形而大不相同。以前解决这一挑战的方法已经考虑学习一种基于车辆的惯性信息,以感知运动动力学相互作用。在本文中,我们假设,除了过去的惯性信息外,还必须预料到将来,还必须预料到将来,还必须预料到将来,还必须预料到将来,还必须预料到将来,还必须预料到将来的动力学相互作用,以实现精确的高速越野导航。为此,我们引入了视觉惯性逆动力动力学(VI-IKD),这是一种新型的基于学习的IKD模型,除了过去的惯性信息外,还基于从机器人前面的地形贴片的视觉信息进行条件,使其能够预期会素动力学相互作用在将来。我们在室内和室外环境中验证了VI-IKD在实验上进行实验性高速越野导航的有效性ART方法,VI-IKD可以以高达3.5 m/s的速度在各种不同的地形上更准确,更强大的越野导航。
translated by 谷歌翻译