在源代码中自动定位易受攻击的陈述至关重要,以确保软件安全性和缓解开发人员的调试工作。这在当今软件生态系统中变得更加重要,其中易受攻击的代码可以在像GitHub这样的软件存储库中轻松且无意中流动。在这类数百万的代码行中,传统的静态和动态方法争取缩放。虽然基于机器学习的方法在这样的设置中看起来很有希望,但大多数工作都在较高的粒度下检测到脆弱的代码 - 在方法或文件级别。因此,开发人员仍然需要检查大量代码以找到需要修复的弱势陈述。本文提出了一种新的集合学习方法来定位脆弱的陈述。我们的模型结合了基于图形的基于序列的神经网络,以成功捕获程序图的本地和全局上下文,并有效地了解代码语义和易受攻击的模式。为了研究天鹅绒的效果,我们使用了一个现成的合成数据集和最近发布的现实世界数据集。在静态分析设置中,未提前检测到易受攻击功能,Velvet可以实现4.5倍的性能,而不是真实世界数据上的基线静态分析仪。对于孤立的漏洞本地化任务,在我们假设特定漏洞声明未知的同时知道函数的漏洞,我们将天鹅绒与几个神经网络进行比较,这些内部网络也参加了本地和全局代码背景。天鹅绒分别达到99.6%和43.6%的13.6%,分别在合成数据和现实世界数据上实现了高精度,优于基线深度学习模型5.3-29.0%。
translated by 谷歌翻译
自动驾驶汽车和卡车,自动车辆(AVS)不应被监管机构和公众接受,直到它们对安全性和可靠性有更高的信心 - 这可以通过测试最实际和令人信服地实现。但是,现有的测试方法不足以检查AV控制器的端到端行为,涉及与诸如行人和人机车辆等多个独立代理的交互的复杂,现实世界的角落案件。在街道和高速公路上的测试驾驶AVS无法捕获许多罕见的事件时,现有的基于仿真的测试方法主要关注简单的情景,并且不适合需要复杂的周围环境的复杂驾驶情况。为了解决这些限制,我们提出了一种新的模糊测试技术,称为AutoFuzz,可以利用广泛使用的AV模拟器的API语法。生成语义和时间有效的复杂驾驶场景(场景序列)。 AutoFuzz由API语法的受限神经网络(NN)进化搜索引导,以生成寻求寻找独特流量违规的方案。评估我们的原型基于最先进的学习的控制器,两个基于规则的控制器和一个工业级控制器,显示了高保真仿真环境中高效地找到了数百个流量违规。此外,通过AutoFuzz发现的基于学习的控制器进行了微调的控制器,成功减少了新版本的AV控制器软件中发现的流量违规。
translated by 谷歌翻译
Due to the high activation sparsity and use of accumulates (AC) instead of expensive multiply-and-accumulates (MAC), neuromorphic spiking neural networks (SNNs) have emerged as a promising low-power alternative to traditional DNNs for several computer vision (CV) applications. However, most existing SNNs require multiple time steps for acceptable inference accuracy, hindering real-time deployment and increasing spiking activity and, consequently, energy consumption. Recent works proposed direct encoding that directly feeds the analog pixel values in the first layer of the SNN in order to significantly reduce the number of time steps. Although the overhead for the first layer MACs with direct encoding is negligible for deep SNNs and the CV processing is efficient using SNNs, the data transfer between the image sensors and the downstream processing costs significant bandwidth and may dominate the total energy. To mitigate this concern, we propose an in-sensor computing hardware-software co-design framework for SNNs targeting image recognition tasks. Our approach reduces the bandwidth between sensing and processing by 12-96x and the resulting total energy by 2.32x compared to traditional CV processing, with a 3.8% reduction in accuracy on ImageNet.
translated by 谷歌翻译
Generative models have been widely applied to solve extractive tasks, where parts of the input is extracted to form the desired output, and achieved significant success. For example, in extractive question answering (QA), generative models have constantly yielded state-of-the-art results. In this work, we identify the issue of tokenization inconsistency that is commonly neglected in training these models. This issue damages the extractive nature of these tasks after the input and output are tokenized inconsistently by the tokenizer, and thus leads to performance drop as well as hallucination. We propose a simple yet effective fix to this issue and conduct a case study on extractive QA. We show that, with consistent tokenization, the model performs better in both in-domain and out-of-domain datasets, with a notable average of +1.7 F2 gain when a BART model is trained on SQuAD and evaluated on 8 QA datasets. Further, the model converges faster, and becomes less likely to generate out-of-context answers. With these findings, we would like to call for more attention on how tokenization should be done when solving extractive tasks and recommend applying consistent tokenization during training.
translated by 谷歌翻译
This white paper lays out a vision of research and development in the field of artificial intelligence for the next decade (and beyond). Its denouement is a cyber-physical ecosystem of natural and synthetic sense-making, in which humans are integral participants$\unicode{x2014}$what we call ''shared intelligence''. This vision is premised on active inference, a formulation of adaptive behavior that can be read as a physics of intelligence, and which inherits from the physics of self-organization. In this context, we understand intelligence as the capacity to accumulate evidence for a generative model of one's sensed world$\unicode{x2014}$also known as self-evidencing. Formally, this corresponds to maximizing (Bayesian) model evidence, via belief updating over several scales: i.e., inference, learning, and model selection. Operationally, this self-evidencing can be realized via (variational) message passing or belief propagation on a factor graph. Crucially, active inference foregrounds an existential imperative of intelligent systems; namely, curiosity or the resolution of uncertainty. This same imperative underwrites belief sharing in ensembles of agents, in which certain aspects (i.e., factors) of each agent's generative world model provide a common ground or frame of reference. Active inference plays a foundational role in this ecology of belief sharing$\unicode{x2014}$leading to a formal account of collective intelligence that rests on shared narratives and goals. We also consider the kinds of communication protocols that must be developed to enable such an ecosystem of intelligences and motivate the development of a shared hyper-spatial modeling language and transaction protocol, as a first$\unicode{x2014}$and key$\unicode{x2014}$step towards such an ecology.
translated by 谷歌翻译
Adaptation-relevant predictions of climate change are often derived by combining climate models in a multi-model ensemble. Model evaluation methods used in performance-based ensemble weighting schemes have limitations in the context of high-impact extreme events. We introduce a locally time-invariant model evaluation method with focus on assessing the simulation of extremes. We explore the behaviour of the proposed method in predicting extreme heat days in Nairobi.
translated by 谷歌翻译
Both industry and academia have made considerable progress in developing trustworthy and responsible machine learning (ML) systems. While critical concepts like fairness and explainability are often addressed, the safety of systems is typically not sufficiently taken into account. By viewing data-driven decision systems as socio-technical systems, we draw on the uncertainty in ML literature to show how fairML systems can also be safeML systems. We posit that a fair model needs to be an uncertainty-aware model, e.g. by drawing on distributional regression. For fair decisions, we argue that a safe fail option should be used for individuals with uncertain categorization. We introduce semi-structured deep distributional regression as a modeling framework which addresses multiple concerns brought against standard ML models and show its use in a real-world example of algorithmic profiling of job seekers.
translated by 谷歌翻译
不同光谱系统的相互不兼容是激光诱导的分解光谱法(LIBS)的最大因素之一。由于需要广泛的校准,与设置新的Libs系统有关的成本增加了。解决该问题将实现实验室间参考测量和共享光谱库,这对于其他光谱技术至关重要。在这项工作中,我们研究了该挑战的简化版本,其中LIBS系统仅在使用的光谱仪和收集光学方面有所不同,但共享设备的所有其他部分,并同时从相同的等离子体羽流中收集光谱。用作异质标本的高光谱图像测量的广泛数据集用于训练可以在系统之间传递光谱的机器学习模型。转移是由由变量自动编码器(VAE)和完全连接的人工神经网络(ANN)组成的管道实现的。在第一步中,我们获得了在初级系统上测量的光谱的潜在表示(通过使用VAE)。在第二步中,我们将光谱从二级系统映射到潜在空间中的相应位置(ANN)。最后,从潜在空间重建二级系统光谱到主要系统的空间。通过几个优点(欧几里得和余弦距离,都在空间上解析; k-均值的转移光谱聚类)来评估转移。将该方法与几种基线方法进行比较。
translated by 谷歌翻译
产量估计是葡萄园管理中的强大工具,因为它允许种植者微调实践以优化产量和质量。但是,目前使用手动抽样进行估计,这是耗时和不精确的。这项研究表明,近端成像的应用与深度学习相结合,以进行葡萄园中的产量估计。使用车辆安装的传感套件进行连续数据收集,并使用商业收益率监控器在收获时结合了地面真实收益数据的收集,可以生成一个23,581个收益点和107,933张图像的大数据集。此外,这项研究是在机械管理的商业葡萄园中进行的,代表了一个充满挑战的图像分析环境,但在加利福尼亚中央山谷中的一组常见条件。测试了三个模型架构:对象检测,CNN回归和变压器模型。对象检测模型在手工标记的图像上进行了训练以定位葡萄束,并将束数量或像素区域求和以与葡萄产量相关。相反,回归模型端到端训练,以预测图像数据中的葡萄产量,而无需手动标记。结果表明,在代表性的保留数据集上,具有相当的绝对百分比误差为18%和18.5%的变压器和具有像素区域处理的对象检测模型。使用显着映射来证明CNN模型的注意力位于葡萄束的预测位置附近以及葡萄树冠的顶部。总体而言,该研究表明,近端成像和深度学习对于大规模预测葡萄群的适用性。此外,端到端建模方法能够与对象检测方法相当地执行,同时消除了手工标记的需求。
translated by 谷歌翻译
There are two reasons why uncertainty about the future yield of investments may not be adequately described by Probability Theory. The first one is due to unique or nearly-unique events, that either never realized or occurred too seldom for probabilities to be reliable. The second one arises when when one fears that something may happen, that one is not even able to figure out, e.g., if one asks: "Climate change, financial crises, pandemic, war, what next?" In both cases, simple one-to-one causal mappings between available alternatives and possible consequences eventually melt down. However, such destructions reflect into the changing narratives of business executives, employees and other stakeholders in specific, identifiable and differential ways. In particular, texts such as consultants' reports or letters to shareholders can be analysed in order to detect the impact of both sorts of uncertainty onto the causal relations that normally guide decision-making. We propose structural measures of causal mappings as a means to measure non-probabilistic uncertainty, eventually suggesting that automated text analysis can greatly augment the possibilities offered by these techniques. Prospective applications may concern statistical institutes, stock market traders, as well as businesses wishing to compare their own vision to those prevailing in their industry.
translated by 谷歌翻译