电力在不同的时间范围和法规上在各个市场上进行交易。由于更高的可再生能源渗透,短期交易变得越来越重要。在德国,盘中电价通常以独特的小时模式围绕EPEX现货市场的白天价格波动。这项工作提出了一种概率建模方法,该方法对日前合同的盘中价格差异进行了建模。该模型通过将每天的每日价格间隔的四个15分钟的间隔视为四维的关节分布,从而捕获了新兴的小时模式。使用归一化流量,即结合条件多元密度估计和概率回归的深层生成模型,从而学习了最终的多元价格差异分布。将归一化流程与选择的历史数据,高斯副群和高斯回归模型进行了比较。在不同的模型中,归一化流量最准确地识别趋势,并且预测间隔最窄。值得注意的是,归一化流是唯一识别稀有价格峰的方法。最后,这项工作讨论了不同外部影响因素的影响,并发现个人大多数因素都可以忽略不计。只有价格差异实现的直接历史和所有投入因素的组合才能显着改善预测。
translated by 谷歌翻译
我们提出了一种专门的方案生成方法,该方法利用预测信息来生成用于日期调度问题的方案。特别是,我们使用归一化的流量来通过从有条件的分布进行采样,该分布使用风速预测来定制方案到特定的一天。我们将生成的方案应用于风能生产者的随机日期招标问题中,并分析该方案是否产生有利可图的决策。与高斯Copulas和Wasserstein基因的对抗网络相比,正常化的流程成功地缩小了每日趋势周围的各种场景范围,同时保持了各种可能的实现。在随机日间招标问题中,与历史场景的无条件选择相比,所有方法的条件情况都会导致更稳定的盈利结果。归一化流量始终获得最高利润,即使对于小型场景。
translated by 谷歌翻译
现代能源系统的设计和运营受到时间依赖性和不确定参数的严重影响,例如可再生发电,负荷需求和电价。这些通常由称为场景的一组离散的实现表示。一种流行的情景生成方法使用允许场景生成的深生成模型(DGM),而无需现有的数据分布。但是,生成方案的验证很困难,目前缺乏对适当的验证方法的全面讨论。为了开始讨论,我们对能源情景生成文献中当前使用的验证方法的关键评估。特别是,我们评估基于概率密度,自动相关和功率谱密度的验证方法。此外,我们建议使用多重术后波动分析(MFDFA)作为峰,爆发和平稳等非琐碎功能的额外验证方法。作为代表性的例子,我们培养了两种可再生发电时间序列(2013年到2015年德国的Photovolataic Antialsion(VAES),以及来自德国的光伏和风的变分自动化器(VAES)和一天电费时间序列在2017年至2019年形成欧洲能源交换。我们将四种验证方法应用于历史和生成的数据,并讨论验证结果的解释以及验证方法的常见错误,陷阱和局限性。我们的评估表明,没有单一方法足够特征,但理想的验证应该包括多种方法,并且在短时间内的情况下仔细解释。
translated by 谷歌翻译
基于神经网络的学习,从光伏(PV)和风中的来源以及负载需求的来源的不可转型可再生发电的分布的学习最近得到了注意力。由于通过直接对数似然最大化训练,归一化流量密度模型特别适用于此任务。然而,从图像生成领域的研究表明,标准归一化流量只能学习歧管分布的涂抹版本。以前的作品在规范化基于流的方案生成的情况下,不要解决这个问题,并且掩弹的分布导致噪声时间序列的采样。在本文中,我们利用了主成分分析(PCA)的等距,从而建立了较低尺寸空间中的标准化流量,同时保持直接和计算有效的似然最大化。我们在2013年至2015年培训PV和风力发电的数据以及德国的负载需求的所得到的主要成分流量(PCF)。本研究结果表明,PCF保留了原始分布的关键特征,如作为时间序列的概率密度和频率行为。然而,PCF的应用不限于可再生能力,而是扩展到任何数据集,时间序列或其他方式,可以使用PCA有效地减少。
translated by 谷歌翻译
最近,与神经网络的时间相关微分方程的解决方案最近引起了很多关注。核心思想是学习控制解决方案从数据演变的法律,该数据可能会被随机噪声污染。但是,与其他机器学习应用相比,通常对手头的系统了解很多。例如,对于许多动态系统,诸如能量或(角度)动量之类的物理量是完全保守的。因此,神经网络必须从数据中学习这些保护定律,并且仅由于有限的训练时间和随机噪声而被满足。在本文中,我们提出了一种替代方法,该方法使用Noether的定理将保护定律本质地纳入神经网络的体系结构。我们证明,这可以更好地预测三个模型系统:在三维牛顿引力潜能中非偏见粒子的运动,Schwarzschild指标中庞大的相对论粒子的运动和两个相互作用的粒子在四个相互作用的粒子系统中的运动方面。
translated by 谷歌翻译
尽管最近的研究集中在量化单词用法上以找到叙事情感弧的整体形状,但叙事中叙事的某些特征仍有待探索。在这里,我们通过找到单词用法中波动开始相关的文本长度来表征亚叙事的叙事时间尺度。我们代表30,000多个项目Gutenberg书籍作为时间序列使用OusiOmetrics,这是一个具有基本含义的功率破坏者框架,本身是对价价 - 宽松义务框架的重新解释,这些框架源自语义差异。我们使用经验模式分解将每本书的力量和危险时间序列分解为组成振荡模式和非振荡趋势的总和。通过将原始力量和危险时间序列的分解与从洗牌文本中得出的分解,我们发现较短的书籍仅显示出一般趋势,而较长的书籍除了一般趋势外,还具有波动,类似于子图在一个中的弧线中的弧线。总体叙事弧。这些波动通常有几千个单词的时期,无论书籍长度或库分类代码如何,但根据书的内容和结构而有所不同。我们的方法提供了一种数据驱动的denoisising方法,可用于各种长度的文本,与使用大型窗口尺寸的更传统的方法相反,该方法可能会无意中平滑相关信息,尤其是对于较短的文本而言。
translated by 谷歌翻译
高通量药物筛查测定法的最新出现引发了机器学习方法的密集开发,包括预测癌细胞系对抗癌药物的敏感性的模型,以及用于生成潜在药物候选者的方法。然而,尚未全面探索具有特定特性的化合物产生具有特定特性和同时建模其功效的概念。为了满足这一需求,我们提出了Vadeers,这是一种基于各种自动编码器的药物功效估算推荐系统。化合物的产生是由具有半监视的高斯混合模型(GMM)的新型自动编码器进行的。先验定义了在潜在空间中的聚类,其中簇与特定的药物特性相关联。此外,Vadeers配备了单元线自动编码器和灵敏度预测网络。该模型结合了抗癌药物的微笑弦表示的数据,它们对蛋白激酶的抑制作用,细胞系生物学特征以及细胞系对药物的敏感性的测量。评估的Vadeers变体在真实和预测的药物敏感性估计之间达到了较高的R = 0.87 Pearson相关性。我们以一种方式训练GMM先验,使潜在空间中的簇通过其抑制作用对应于药物的预计聚类。我们表明,学到的潜在表示和新生成的数据点准确地反映了给定的聚类。总而言之,Vadeers提供了一种全面的药物和细胞系特性模型及其之间的关系,以及引导的新型化合物。
translated by 谷歌翻译
Obtaining a dynamic population distribution is key to many decision-making processes such as urban planning, disaster management and most importantly helping the government to better allocate socio-technical supply. For the aspiration of these objectives, good population data is essential. The traditional method of collecting population data through the census is expensive and tedious. In recent years, statistical and machine learning methods have been developed to estimate population distribution. Most of the methods use data sets that are either developed on a small scale or not publicly available yet. Thus, the development and evaluation of new methods become challenging. We fill this gap by providing a comprehensive data set for population estimation in 98 European cities. The data set comprises a digital elevation model, local climate zone, land use proportions, nighttime lights in combination with multi-spectral Sentinel-2 imagery, and data from the Open Street Map initiative. We anticipate that it would be a valuable addition to the research community for the development of sophisticated approaches in the field of population estimation.
translated by 谷歌翻译
卷积神经网络已使基于医学图像的诊断有了重大改进。但是,越来越明显的是,这些模型在面对虚假的相关性和数据集转移时易受性能降解,例如,领导者(例如,代表性不足的患者群体的表现不足)。在本文中,我们比较了ADNI MRI数据集上的两个分类方案:使用手动选择的体积特征的简单逻辑回归模型,以及对3D MRI数据训练的卷积神经网络。我们在面对不同的数据集拆分,训练集的性别组成和疾病阶段的情况下评估了受过训练的模型的鲁棒性。与其他成像方式中的早期工作相反,我们没有观察到培训数据集中多数组的模型性能的明确模式。取而代之的是,尽管逻辑回归对数据集组成完全可靠,但我们发现,在培训数据集中包括更多女性受试者时,男性和女性受试者的CNN性能通常会提高。我们假设这可能是由于两性病理学的固有差异。此外,在我们的分析中,Logistic回归模型优于3D CNN,强调了基于先验知识的手动特征规范的实用性,以及需要更强大的自动功能选择。
translated by 谷歌翻译
脑转移性疾病的治疗决策依赖于主要器官位点的知识,目前用活组织检查和组织学进行。在这里,我们开发了一种具有全脑MRI数据的准确非侵入性数字组织学的新型深度学习方法。我们的IRB批准的单网回顾性研究由患者(n = 1,399)组成,提及MRI治疗规划和伽马刀放射牢房超过19年。对比增强的T1加权和T2加权流体减毒的反转恢复脑MRI考试(n = 1,582)被预处理,并输入肿瘤细分,模态转移和主要部位分类的建议深度学习工作流程为五个课程之一(肺,乳腺,黑色素瘤,肾等)。十倍的交叉验证产生的总体AUC为0.947(95%CI:0.938,0.955),肺类AUC,0.899(95%CI:0.884,0.915),乳房类AUC为0.990(95%CI:0.983,0.997) ,黑色素瘤ACAC为0.882(95%CI:0.858,0.906),肾类AUC为0.870(95%CI:0.823,0.918),以及0.885的其他AUC(95%CI:0.843,0.949)。这些数据确定全脑成像特征是判别的,以便准确诊断恶性肿瘤的主要器官位点。我们的端到端深度射出方法具有巨大的分类来自全脑MRI图像的转移性肿瘤类型。进一步的细化可以提供一种无价的临床工具,以加快对精密治疗和改进的结果的原发性癌症现场鉴定。
translated by 谷歌翻译