In this paper, we explore the use of metric learning to embed Windows PE files in a low-dimensional vector space for downstream use in a variety of applications, including malware detection, family classification, and malware attribute tagging. Specifically, we enrich labeling on malicious and benign PE files using computationally expensive, disassembly-based malicious capabilities. Using these capabilities, we derive several different types of metric embeddings utilizing an embedding neural network trained via contrastive loss, Spearman rank correlation, and combinations thereof. We then examine performance on a variety of transfer tasks performed on the EMBER and SOREL datasets, demonstrating that for several tasks, low-dimensional, computationally efficient metric embeddings maintain performance with little decay, which offers the potential to quickly retrain for a variety of transfer tasks at significantly reduced storage overhead. We conclude with an examination of practical considerations for the use of our proposed embedding approach, such as robustness to adversarial evasion and introduction of task-specific auxiliary objectives to improve performance on mission critical tasks.
translated by 谷歌翻译
不确定性的量化对于采用机器学习至关重要,尤其是拒绝分布(OOD)数据回到人类专家进行审查。然而,进步一直很慢,因为计算效率和不确定性估计质量之间必须达到平衡。因此,许多人使用神经网络或蒙特卡洛辍学的深层集合来进行相对最小的计算和记忆时合理的不确定性估计。出乎意料的是,当我们专注于$ \ leq 1 \%$ frese-falds正率(FPR)的现实世界中的约束时,先前的方法无法可靠地检测到OOD样本。值得注意的是,即使高斯随机噪声也无法触发这些流行的OOD技术。我们通过设计一种简单的对抗训练计划来帮助缓解这个问题,该计划结合了辍学合奏所预测的认知不确定性的攻击。我们证明了这种方法可以改善标准数据(即未经对抗制作)上的OOD检测性能,并将标准化的部分AUC从近乎随机的猜测性能提高到$ \ geq 0.75 $。
translated by 谷歌翻译
由于对神经网络的运行推断的计算成本,因此通常需要在第三方的计算环境或硬件上部署推论步骤。如果第三方不完全信任,则需要混淆输入和输出的性质,以便第三方无法轻易确定正在执行哪些特定任务。事实证明,存在利用不受信任的政党的协议,但在实践中运行的计算要求太高了。相反,我们探索了一种不同的快速启发式安全策略,我们称之为连接主义符号伪造秘密。通过利用全息降低表示(HRR),我们创建了一个具有伪加密风格的防御的神经网络,从经验上表现出强大的攻击性,即使在不切实际地偏爱对手的威胁模型下也是如此。
translated by 谷歌翻译
许多度量学习任务,例如三胞胎学习,最近的邻居检索和可视化,主要是将最终度量是欧几里得距离的某种变体(例如余弦或玛哈拉诺省)的嵌入任务,并且算法必须学会嵌入点进入预选空间。通常不探索对非欧国人几何形状或适当性的研究,我们认为这是由于缺乏学习非欧盟距离距离的工具所致。在认为使用不对称方法特别研究的情况下,我们提出了一种通过输入凸神经网络以可微分方式学习任意伯格曼分歧的新方法。在一组新的和先前研究的任务中,包括不对称回归,排名和聚类,我们证明我们的方法比以前的布雷格曼学习方法更忠实地学习分歧。为此,我们获得了学习神经差异的第一种方法,并继承了布雷格曼分歧的许多不错的数学特性,为更好地发展和研究不对称距离学习提供了基础和工具。
translated by 谷歌翻译
由于技术困难以与原始数据一致的方式更改数据,因此在网络安全域中,数据扩展很少见。鉴于获得符合版权限制的良性和恶意培训数据的独特困难,这一缺陷尤其繁重,而银行和政府等机构会收到有针对性的恶意软件,这些恶意软件永远不会大量存在。我们介绍Marvolo是一种二进制突变器,该突变器以编程方式生产恶意软件(和良性)数据集,以提高ML驱动的恶意软件探测器的准确性。 Marvolo采用语义保护代码转换,模仿恶意软件作者和防御性良性开发人员通常在实践中进行的更改,从而使我们能够生成有意义的增强数据。至关重要的是,语义传播的转换也使Marvolo能够安全地将标签从原始生成的数据样本传播到,而无需规定昂贵的二进制文件的昂贵反向工程。此外,Marvolo通过最大化给定时间(或资源)预算中生成的各种数据样本的密度来最大化,使从业人员最大程度地嵌入了几种关键优化。使用广泛的商业恶意软件数据集和最近的ML驱动的恶意软件探测器进行的实验表明,Marvolo将准确性提高了5%,而仅在潜在的输入二进制文件的一小部分(15%)上运行。
translated by 谷歌翻译
从开放式域文本提示中生成和编辑图像是迄今为止需要昂贵且经过特殊训练的型号的一项挑战性的任务。我们为这两个任务展示了一种新颖的方法,该方法能够通过使用多模式编码器来指导图像世代,从而从具有显着语义复杂性的文本提示中产生高视觉质量的图像。我们在各种任务上说明了如何使用夹[37]引导VQGAN [11]产生的视觉质量输出比先前的较不灵活的方法,例如DALL-E [38],Glide [33]和Open-Edit [24],尽管没有接受培训的任务。我们的代码在公共存储库中可用。
translated by 谷歌翻译
随着人工智能(AI)技术在社会中变得越来越强大和突出,他们的滥用就是日益关注的问题。在教育环境中,学生可以使用AI技术来欺骗作业和考试。在本文中,我们探讨了变形金刚是否可以用于求解介绍级的编程作业,同时绕过常用的AI工具来检测软件部分之间的相似性。我们发现使用GPT-J [Wang和Komatsuzaki,2021]的学生可以完成入门级的编程作业,而无需触发Moss的怀疑[Aiken,2000],这是一种广泛使用的软件相似性和窃探测工具。尽管事实上GPT-J没有接受有关问题的培训,也没有提供任何示例可供工作。我们进一步发现,GPT-J编写的代码在结构上是多种多样的,缺乏任何特定的告诉未来的pla窃检测技术可能会用来尝试识别算法生成的代码。最后,我们讨论了大语言模型的道德和教育含义以及未来研究的方向。
translated by 谷歌翻译
虽然已知存在强烈相关的抗病毒发动机的组,但目前有限地了解如何或为什么这些相关性所在的理解。使用代表杀毒扫描数据十年的2500万致毒素报告的语料库,我们挑战普遍的智慧,即这些相关性主要来自“一阶”互动,例如杀毒供应商复制领先供应商标签。我们介绍时间秩-1相似性矩阵分解(R1SM-T),以研究这些相关性的起源,并模拟杀毒发动机之间的共识如何随时间变化。我们揭示了一流的相互作用,并不像以前认为杀毒相关的那么多的行为,并且杀毒发动机之间的关系具有高度挥发性。我们提出了根据我们的研究结果需要未来学习和考虑的项目的建议。
translated by 谷歌翻译
学习了解连接自然语言的基础语言,是一个关键的研究区域。在接地语言习得中的事先工作主要集中在文本输入上。在这项工作中,我们展示了对配对的视觉感知和原始语音输入进行接地语言习得的可行性。这将允许从最终用户学习新的任务和环境的语言,从而减少对文本输入的依赖性,并且可能减轻广泛可用语音识别系统中发现的人口统计偏差的影响。我们利用最近在自我监督的语言表演模型中的工作,并表明学习的言论表示可以使语言接地系统更加包容,同时保持甚至增加一般性。
translated by 谷歌翻译
恶意软件家庭分类是具有公共安全的重要问题,并通过专家标签的高成本受到阻碍的重要问题。绝大多数公司使用嘈杂的标签方法,阻碍了结果的定量量化和更深的相互作用。为了提供进一步前进所需的数据,我们创建了恶意软件开源威胁情报族(图案)数据集。 MOTIF包含来自454个家庭的3,095个恶意软件样本,使其成为最大,最多样化的公共恶意软件数据集,迄今为止,比以前的Windows恶意软件语料库大于任何先前的专家标记的语料库,近3倍。 MOTIF还附带了从恶意软件样本到威胁报告的映射,以信誉良好的行业来源发布,这两者都验证了标签,并打开了将不透明的恶意软件样本连接到人类可读描述的新的研究机会。这使得重要的评估通常是不可行的,由于行业的非标准化报告。例如,我们提供用于描述相同恶意软件系列的不同名称的别名,允许我们在从不同源获得名称时,为您的第一次准确性进行基准测试。使用MOTIF数据集获得的评估结果表明现有任务具有重要的改进空间,抗病毒多数投票的准确性仅以62.10%和众所周知的高度精度测量。我们的调查结果表明,由于在所考虑的样品中可能无法清楚的类别,因此,恶意软件家庭分类与大多数ML文献中的研究不同的标记噪声遭受任何类型的标记噪声。
translated by 谷歌翻译