模仿学习是一种广泛使用的政策学习方法,它使智能代理能够从专家演示中获取复杂的技能。模仿学习算法的输入通常由当前的观察和历史观察组成,因为最近的观察结果可能不含足够的信息。图像观察尤其是这种情况,其中单个图像仅包含场景的一个视图,并且缺乏运动信息和对象阻塞。从理论上讲,为模仿学习代理提供多个观察将带来更好的性能。然而,令人惊讶的是,人们发现有时从观察史中模仿的表现比最近的观察结果差。在本文中,我们从神经网络角度的信息流中解释了这种现象。我们还提出了一种新颖的模仿学习神经网络体系结构,该架构不会因设计而遭受这个问题的困扰。此外,我们的方法缩放到高维图像观测值。最后,我们对两个广泛使用的模拟器Carla和Mujoco进行了基准测试,它成功地减轻了模仿问题并超过了现有的解决方案。
translated by 谷歌翻译
知识图(kg)是近年来突出的知识表示形式。因为它集中在名义实体及其关系上,所以传统的知识图本质上是静态和百科全书。在此基础上,事件知识图(事件kg)通过文本处理对时间和空间动力进行建模,以促进下游应用程序,例如提问,建议和智能搜索。另一方面,现有的KG研究主要集中在文本处理和静态事实上,而忽略了照片,电影和预训练的神经网络中包含的大量动态行为信息。此外,没有努力将行为智能信息包括到深入强化学习(DRL)和机器人学习的知识图中。在本文中,我们提出了一种新颖的动态知识和技能图(KSG),然后我们基于CN-DBPEDIA开发了基本和特定的KSG。节点分为实体和属性节点,其中包含代理,环境和技能(DRL策略或策略表示)的实体节点,以及包含实体描述,预训练网络和离线数据集的属性节点。 KSG可以在各种环境中搜索不同代理的技能,并提供可转移的信息以获取新技能。这是我们意识到的第一项研究,研究了动态的KSG,以进行技能检索和学习。新技能学习的广泛实验结果表明,KSG提高了新的技能学习效率。
translated by 谷歌翻译
当许多松散相关的未标记数据可用并且稀缺标记的数据时,机器智能的范式从纯粹的监督学习转变为更实用的情况。大多数现有算法都假定基础任务分布是固定的。在这里,我们考虑了随着时间的推移,该任务分布中的一个更现实和具有挑战性的环境会不断发展。我们将这个问题称为半监督的元学习,并具有不断发展的任务分布,缩写为集合。在这种更现实的环境中出现了两个关键挑战:(i)在存在大量未标记的分发(OOD)数据的情况下,如何使用未标记的数据; (ii)如何防止由于任务分配转移而导致先前学习的任务分布的灾难性遗忘。我们提出了一种强大的知识和知识保留的半监督元学习方法(秩序),以应对这两个主要挑战。具体而言,我们的订单引入了一种新型的共同信息正则化,以使用未标记的OOD数据鲁棒化模型,并采用最佳的运输正规化来记住以前在特征空间中学习的知识。此外,我们在一个非常具有挑战性的数据集上测试我们的方法:大规模非平稳的半监督任务分布的集合,该任务分布由(至少)72K任务组成。通过广泛的实验,我们证明了拟议的订单减轻了忘记不断发展的任务分布,并且对OOD数据比相关的强基础更强大。
translated by 谷歌翻译
组成零射击学习(CZSL)是指识别已知视觉原始素的看不见的组成,这是人工智能系统学习和理解世界的重要能力。尽管在现有基准测试方面取得了长足的进展,但我们怀疑流行的CZSL方法是否可以解决几乎没有射击的挑战和很少的参考构成,这在现实世界中看不见的环境中学习时很常见。为此,我们研究了本文中具有挑战性的参考有限的零拍学习(RL-CZSL)问题,即,只有少数样品作为参考,应确定观察到的原始物的参考的有限参考组成。我们提出了一种新型的元组合图学习器(metaCGL),该图可以从不足的参考信息中有效地学习组成性并推广到看不见的组成。此外,我们通过两个新的大型数据集构建了一个基准测试,这些数据集由具有不同组成标签的自然图像组成,为RL-CZSL提供了更现实的环境。基准中的广泛实验表明,当参考文献受到构成学习的限制时,我们的方法在识别看不见的成分方面取得了最新的性能。
translated by 谷歌翻译
在本文中,我们探讨了一个新的知识障碍问题,称为联合选择性聚合(FEDSA)。 FEDSA的目的是在几位分散的教师的帮助下培训学生模型,以完成一项新任务,他们的预培训任务和数据是不同且不可知的。我们调查此类问题设置的动机源于最近的模型共享困境。许多研究人员或机构已经在培训大型且称职的网络上花费了巨大的资源。由于隐私,安全或知识产权问题,他们也无法分享自己的预培训模型,即使他们希望为社区做出贡献。拟议的FEDSA提供了解决这一困境的解决方案,并使其更进一步,因为学识渊博的学生可以专门从事与所有老师不同的新任务。为此,我们提出了一种处理FEDSA的专门战略。具体而言,我们的学生培训过程是由一种新型的基于显着性的方法驱动的,该方法可以适应教师作为参与者,并将其代表性能力融入到学生中。为了评估FEDSA的有效性,我们在单任务和多任务设置上进行实验。实验结果表明,FEDSA有效地将分散模型的知识融合在一起,并将竞争性能达到集中式基准。
translated by 谷歌翻译
在本文中,我们主要关注如何通过借口任务(例如旋转或颜色置换等)学习其他特征表示形式的其他特征表示形式。借口任务产生的这种附加知识可以进一步提高几次学习(FSL)的性能,因为它与人类通知的监督(即FSL任务的类标签)有所不同。为了解决此问题,我们提出了插入式层次树结构感知(HTS)方法,该方法不仅了解FSL和借口任务的关系,而且更重要的是,可以自适应地选择和汇总由借口任务生成的特征表示,以最大化FSL任务的性能。引入了层次树构造组件和封闭式选择汇总组件来构建树结构并找到更丰富的可转移知识,这些知识可以迅速适应具有一些标记的图像的新颖类。广泛的实验表明,我们的HTS可以显着增强多种几次方法,以在四个基准数据集上实现新的最新性能。该代码可在以下网址获得:https://github.com/remimz/hts-eccv22。
translated by 谷歌翻译
不同的应用方案将导致IMU表现出不同的误差特征,这将导致机器人应用程序。但是,大多数数据处理方法需要设计用于特定方案。为了解决这个问题,我们提出了一些拍摄的域适应方法。在这项工作中,考虑了一个域适应框架用于去噪IMU,旨在改善域适应性的重建损失。此外,为了进一步提高数据的情况下的适应性,采用了几次拍摄的培训策略。在实验中,我们在两个数据集(EUROC和TUM-VI)上量化了我们的方法,以及具有三种不同精密IMU的两个真正的机器人(汽车和四叉机器人)。根据实验结果,通过T-SNE验证了我们框架的适应性。在方向结果中,我们的提出方法显示出巨大的去噪能力。
translated by 谷歌翻译
动态图中的表示学习是一个具有挑战性的问题,因为图形和节点功能的拓扑在不同的时间内变化。这要求模型能够有效地捕获图形拓扑信息和时间信息。大多数现有的作品都是基于经常性神经网络(RNN)的作品,用于确切的动态图形的时间信息,因此它们继承了RNN的相同缺点。在本文中,我们提出了在动态图表(LEDG)上的发展 - 一种新的算法,共同学习图信息和时间信息。具体而言,我们的方法利用基于梯度的元学习来学习更新的策略,这些策略与快照上的RNN具有更好的泛化能力。它是模型 - 不可知的,因此可以在动态图表上培训基于图形神经网络(GNN)的任何消息。为了增强代表性权力,我们将嵌入的嵌入嵌入到时间嵌入和图形内在嵌入。我们对各种数据集和下游任务进行实验,实验结果验证了我们方法的有效性。
translated by 谷歌翻译
如今,移动通信在5G通信行业中的快速增长。随着容量需求和经验质量要求的要求,移动性预测已被广泛应用于移动通信,并成为利用历史交通信息预测交通用户的未来位置的关键推动因素之一,因为精确的移动性预测可以帮助实现高效无线电资源管理,协助路线规划,指南运输或减轻交通拥堵。然而,由于业务网络复杂的交通网络,移动性预测是一个具有挑战性的问题。在过去几年中,在这方面已经完成了大量研究,包括非机器学习(非ML)和基于机器学习(ML)的移动预测。在本文中,首先,我们介绍了移动性预测的最先进技术。然后,我们选择了支持向量机(SVM)算法,用于实际交通日期培训的ML算法。最后,我们分析了移动性预测的模拟结果,并引入了将应用移动预测的未来工作计划来改善移动通信。
translated by 谷歌翻译
代理商学习广泛适用和通用策略具有重要意义,可以实现包括图像和文本描述在内的各种目标。考虑到这类感知的目标,深度加强学习研究的前沿是学习一个没有手工制作奖励的目标条件政策。要了解这种政策,最近的作品通常会像奖励到明确的嵌入空间中的给定目标的非参数距离。从不同的观点来看,我们提出了一种新的无监督学习方法,名为目标条件政策,具有内在动机(GPIM),共同学习抽象级别政策和目标条件的政策。摘要级别策略在潜在变量上被调节,以优化鉴别器,并发现进一步的不同状态,进一步呈现为目标条件策略的感知特定目标。学习鉴别者作为目标条件策略的内在奖励功能,以模仿抽象级别政策引起的轨迹。各种机器人任务的实验证明了我们所提出的GPIM方法的有效性和效率,其基本上优于现有技术。
translated by 谷歌翻译