在过去的十年中,在杂交无人驾驶空中水下车辆的研究中努力,机器人可以轻松飞行和潜入水中的机械适应水平。然而,大多数文献集中在物理设计,建筑物的实际问题上,最近,低水平的控制策略。在高级情报的背景下,如运动规划和与现实世界的互动的情况下已经完成。因此,我们在本文中提出了一种轨迹规划方法,允许避免避免未知的障碍和空中媒体之间的平滑过渡。我们的方法基于经典迅速探索随机树的变体,其主要优点是处理障碍,复杂的非线性动力学,模型不确定性和外部干扰的能力。该方法使用\ Hydrone的动态模型,提出具有高水下性能的混合动力车辆,但我们认为它可以很容易地推广到其他类型的空中/水生平台。在实验部分中,我们在充满障碍物的环境中显示了模拟结果,其中机器人被命令执行不同的媒体运动,展示了我们的策略的适用性。
translated by 谷歌翻译
Non-linear state-space models, also known as general hidden Markov models, are ubiquitous in statistical machine learning, being the most classical generative models for serial data and sequences in general. The particle-based, rapid incremental smoother PaRIS is a sequential Monte Carlo (SMC) technique allowing for efficient online approximation of expectations of additive functionals under the smoothing distribution in these models. Such expectations appear naturally in several learning contexts, such as likelihood estimation (MLE) and Markov score climbing (MSC). PARIS has linear computational complexity, limited memory requirements and comes with non-asymptotic bounds, convergence results and stability guarantees. Still, being based on self-normalised importance sampling, the PaRIS estimator is biased. Our first contribution is to design a novel additive smoothing algorithm, the Parisian particle Gibbs PPG sampler, which can be viewed as a PaRIS algorithm driven by conditional SMC moves, resulting in bias-reduced estimates of the targeted quantities. We substantiate the PPG algorithm with theoretical results, including new bounds on bias and variance as well as deviation inequalities. Our second contribution is to apply PPG in a learning framework, covering MLE and MSC as special examples. In this context, we establish, under standard assumptions, non-asymptotic bounds highlighting the value of bias reduction and the implicit Rao--Blackwellization of PPG. These are the first non-asymptotic results of this kind in this setting. We illustrate our theoretical results with numerical experiments supporting our claims.
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译
Despite the impact of psychiatric disorders on clinical health, early-stage diagnosis remains a challenge. Machine learning studies have shown that classifiers tend to be overly narrow in the diagnosis prediction task. The overlap between conditions leads to high heterogeneity among participants that is not adequately captured by classification models. To address this issue, normative approaches have surged as an alternative method. By using a generative model to learn the distribution of healthy brain data patterns, we can identify the presence of pathologies as deviations or outliers from the distribution learned by the model. In particular, deep generative models showed great results as normative models to identify neurological lesions in the brain. However, unlike most neurological lesions, psychiatric disorders present subtle changes widespread in several brain regions, making these alterations challenging to identify. In this work, we evaluate the performance of transformer-based normative models to detect subtle brain changes expressed in adolescents and young adults. We trained our model on 3D MRI scans of neurotypical individuals (N=1,765). Then, we obtained the likelihood of neurotypical controls and psychiatric patients with early-stage schizophrenia from an independent dataset (N=93) from the Human Connectome Project. Using the predicted likelihood of the scans as a proxy for a normative score, we obtained an AUROC of 0.82 when assessing the difference between controls and individuals with early-stage schizophrenia. Our approach surpassed recent normative methods based on brain age and Gaussian Process, showing the promising use of deep generative models to help in individualised analyses.
translated by 谷歌翻译
Image generation and image completion are rapidly evolving fields, thanks to machine learning algorithms that are able to realistically replace missing pixels. However, generating large high resolution images, with a large level of details, presents important computational challenges. In this work, we formulate the image generation task as completion of an image where one out of three corners is missing. We then extend this approach to iteratively build larger images with the same level of detail. Our goal is to obtain a scalable methodology to generate high resolution samples typically found in satellite imagery data sets. We introduce a conditional progressive Generative Adversarial Networks (GAN), that generates the missing tile in an image, using as input three initial adjacent tiles encoded in a latent vector by a Wasserstein auto-encoder. We focus on a set of images used by the United Nations Satellite Centre (UNOSAT) to train flood detection tools, and validate the quality of synthetic images in a realistic setup.
translated by 谷歌翻译
Out-of-distribution detection is crucial to the safe deployment of machine learning systems. Currently, the state-of-the-art in unsupervised out-of-distribution detection is dominated by generative-based approaches that make use of estimates of the likelihood or other measurements from a generative model. Reconstruction-based methods offer an alternative approach, in which a measure of reconstruction error is used to determine if a sample is out-of-distribution. However, reconstruction-based approaches are less favoured, as they require careful tuning of the model's information bottleneck - such as the size of the latent dimension - to produce good results. In this work, we exploit the view of denoising diffusion probabilistic models (DDPM) as denoising autoencoders where the bottleneck is controlled externally, by means of the amount of noise applied. We propose to use DDPMs to reconstruct an input that has been noised to a range of noise levels, and use the resulting multi-dimensional reconstruction error to classify out-of-distribution inputs. Our approach outperforms not only reconstruction-based methods, but also state-of-the-art generative-based approaches.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
为了实现良好的性能和概括性,医疗图像分割模型应在具有足够可变性的大量数据集上进行培训。由于道德和治理限制以及与标签数据相关的成本,经常对科学发展进行扼杀,并经过对有限数据的培训和测试。数据增强通常用于人为地增加数据分布的可变性并提高模型的通用性。最近的作品探索了图像合成的深层生成模型,因为这种方法将使有效的无限数据生成多种多样的数据,从而解决了通用性和数据访问问题。但是,许多提出的解决方案限制了用户对生成内容的控制。在这项工作中,我们提出了Brainspade,该模型将基于合成扩散的标签发生器与语义图像发生器结合在一起。我们的模型可以在有或没有感兴趣的病理的情况下产生完全合成的大脑标签,然后产生任意引导样式的相应MRI图像。实验表明,Brainspade合成数据可用于训练分割模型,其性能与在真实数据中训练的模型相当。
translated by 谷歌翻译
深度神经网络在医学图像分析中带来了显着突破。但是,由于其渴望数据的性质,医学成像项目中适度的数据集大小可能会阻碍其全部潜力。生成合成数据提供了一种有希望的替代方案,可以补充培训数据集并进行更大范围的医学图像研究。最近,扩散模型通过产生逼真的合成图像引起了计算机视觉社区的注意。在这项研究中,我们使用潜在扩散模型探索从高分辨率3D脑图像中生成合成图像。我们使用来自英国生物银行数据集的T1W MRI图像(n = 31,740)来训练我们的模型,以了解脑图像的概率分布,该脑图像以协变量为基础,例如年龄,性别和大脑结构量。我们发现我们的模型创建了现实的数据,并且可以使用条件变量有效地控制数据生成。除此之外,我们创建了一个带有100,000次脑图像的合成数据集,并使科学界公开使用。
translated by 谷歌翻译
可以使用医学成像数据研究人类解剖学,形态和相关疾病。但是,访问医学成像数据受到治理和隐私问题,数据所有权和获取成本的限制,从而限制了我们理解人体的能力。解决此问题的一个可能解决方案是创建能够学习的模型,然后生成以相关性的特定特征(例如,年龄,性别和疾病状态)来生成人体的合成图像。最近,以神经网络形式的深层生成模型已被用于创建自然场景的合成2D图像。尽管如此,数据稀缺性,算法和计算局限性仍阻碍了具有正确解剖形态的高分辨率3D体积成像数据的能力。这项工作提出了一个生成模型,可以缩放以产生人类大脑的解剖学正确,高分辨率和现实的图像,并具有必要的质量,以允许进一步的下游分析。产生潜在无限数据的能力不仅能够对人体解剖学和病理学进行大规模研究,而不会危及患者的隐私,而且还可以在异常检测,模态综合,有限的数据和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平的学习领域进行显着提高。道德AI。代码和训练有素的模型可在以下网址提供:https://github.com/amigolab/synthanatomy。
translated by 谷歌翻译