Computational catalysis is playing an increasingly significant role in the design of catalysts across a wide range of applications. A common task for many computational methods is the need to accurately compute the minimum binding energy - the adsorption energy - for an adsorbate and a catalyst surface of interest. Traditionally, the identification of low energy adsorbate-surface configurations relies on heuristic methods and researcher intuition. As the desire to perform high-throughput screening increases, it becomes challenging to use heuristics and intuition alone. In this paper, we demonstrate machine learning potentials can be leveraged to identify low energy adsorbate-surface configurations more accurately and efficiently. Our algorithm provides a spectrum of trade-offs between accuracy and efficiency, with one balanced option finding the lowest energy configuration, within a 0.1 eV threshold, 86.63% of the time, while achieving a 1387x speedup in computation. To standardize benchmarking, we introduce the Open Catalyst Dense dataset containing nearly 1,000 diverse surfaces and 87,045 unique configurations.
translated by 谷歌翻译
建模原子系统的能量和力是计算化学中的一个基本问题,有可能帮助解决世界上许多最紧迫的问题,包括与能源稀缺和气候变化有关的问题。这些计算传统上是使用密度函数理论进行的,这在计算上非常昂贵。机器学习有可能从天数或小时到秒从天数大幅提高这些计算的效率。我们建议球形通道网络(SCN)对原子能量和力进行建模。 SCN是一个图神经网络,节点代表原子并边缘其相邻原子。原子嵌入是使用球形谐波表示的一组球形函数,称为球形通道。我们证明,通过基于3D边缘方向旋转嵌入式,可以在保持消息的旋转模糊性的同时使用更多信息。虽然均衡性是理想的属性,但我们发现,通过在消息传递和聚合中放松这种约束,可以提高准确性。我们在大规模开放催化剂2020数据集中展示了最新的结果,这些数据集在能源和力量预测中,用于许多任务和指标。
translated by 谷歌翻译
计算催化和机器学习社区在开发用于催化剂发现和设计的机器学习模型方面取得了长足的进步。然而,跨越催化的化学空间的一般机器学习潜力仍然无法触及。一个重大障碍是在广泛的材料中获得访问培训数据的访问。缺乏数据的一类重要材料是氧化物,它抑制模型无法更广泛地研究氧气进化反应和氧化物电催化。为了解决这个问题,我们开发了开放的催化剂2022(OC22)数据集,包括62,521个密度功能理论(DFT)放松(〜9,884,504个单点计算),遍及一系列氧化物材料,覆盖范围,覆盖率和吸附物( *H, *o, *o, *o, *o, *o, * n, *c, *ooh, *oh, *oh2, *o2, *co)。我们定义广义任务,以预测催化过程中适用的总系统能量,发展几个图神经网络的基线性能(Schnet,Dimenet ++,Forcenet,Spinconv,Painn,Painn,Gemnet-DT,Gemnet-DT,Gemnet-OC),并提供预先定义的数据集分割以建立明确的基准,以实现未来的努力。对于所有任务,我们研究组合数据集是否会带来更好的结果,即使它们包含不同的材料或吸附物。具体而言,我们在Open Catalyst 2020(OC20)数据集和OC22上共同训练模型,或OC22上的微调OC20型号。在最一般的任务中,Gemnet-OC看到通过微调来提高了约32%的能量预测,通过联合训练的力预测提高了约9%。令人惊讶的是,OC20和较小的OC22数据集的联合培训也将OC20的总能量预测提高了约19%。数据集和基线模型是开源的,公众排行榜将遵循,以鼓励社区的持续发展,以了解总能源任务和数据。
translated by 谷歌翻译
Recent work has shown the benefits of synthetic data for use in computer vision, with applications ranging from autonomous driving to face landmark detection and reconstruction. There are a number of benefits of using synthetic data from privacy preservation and bias elimination to quality and feasibility of annotation. Generating human-centered synthetic data is a particular challenge in terms of realism and domain-gap, though recent work has shown that effective machine learning models can be trained using synthetic face data alone. We show that this can be extended to include the full body by building on the pipeline of Wood et al. to generate synthetic images of humans in their entirety, with ground-truth annotations for computer vision applications. In this report we describe how we construct a parametric model of the face and body, including articulated hands; our rendering pipeline to generate realistic images of humans based on this body model; an approach for training DNNs to regress a dense set of landmarks covering the entire body; and a method for fitting our body model to dense landmarks predicted from multiple views.
translated by 谷歌翻译
Minimising the longest travel distance for a group of mobile robots with interchangeable goals requires knowledge of the shortest length paths between all robots and goal destinations. Determining the exact length of the shortest paths in an environment with obstacles is challenging and cannot be guaranteed in a finite time. We propose an algorithm in which the accuracy of the path planning is iteratively increased. The approach provides a certificate when the uncertainties on estimates of the shortest paths become small enough to guarantee the optimality of the goal assignment. To this end, we apply results from assignment sensitivity assuming upper and lower bounds on the length of the shortest paths. We then provide polynomial-time methods to find such bounds by applying sampling-based path planning. The upper bounds are given by feasible paths, the lower bounds are obtained by expanding the sample set and leveraging knowledge of the sample dispersion. We demonstrate the application of the proposed method with a multi-robot path-planning case study.
translated by 谷歌翻译
Human operators in human-robot teams are commonly perceived to be critical for mission success. To explore the direct and perceived impact of operator input on task success and team performance, 16 real-world missions (10 hrs) were conducted based on the DARPA Subterranean Challenge. These missions were to deploy a heterogeneous team of robots for a search task to locate and identify artifacts such as climbing rope, drills and mannequins representing human survivors. Two conditions were evaluated: human operators that could control the robot team with state-of-the-art autonomy (Human-Robot Team) compared to autonomous missions without human operator input (Robot-Autonomy). Human-Robot Teams were often in directed autonomy mode (70% of mission time), found more items, traversed more distance, covered more unique ground, and had a higher time between safety-related events. Human-Robot Teams were faster at finding the first artifact, but slower to respond to information from the robot team. In routine conditions, scores were comparable for artifacts, distance, and coverage. Reasons for intervention included creating waypoints to prioritise high-yield areas, and to navigate through error-prone spaces. After observing robot autonomy, operators reported increases in robot competency and trust, but that robot behaviour was not always transparent and understandable, even after high mission performance.
translated by 谷歌翻译
Entrainment is the phenomenon by which an interlocutor adapts their speaking style to align with their partner in conversations. It has been found in different dimensions as acoustic, prosodic, lexical or syntactic. In this work, we explore and utilize the entrainment phenomenon to improve spoken dialogue systems for voice assistants. We first examine the existence of the entrainment phenomenon in human-to-human dialogues in respect to acoustic feature and then extend the analysis to emotion features. The analysis results show strong evidence of entrainment in terms of both acoustic and emotion features. Based on this findings, we implement two entrainment policies and assess if the integration of entrainment principle into a Text-to-Speech (TTS) system improves the synthesis performance and the user experience. It is found that the integration of the entrainment principle into a TTS system brings performance improvement when considering acoustic features, while no obvious improvement is observed when considering emotion features.
translated by 谷歌翻译
Recent advances in neural rendering imply a future of widespread visual data distributions through sharing NeRF model weights. However, while common visual data (images and videos) have standard approaches to embed ownership or copyright information explicitly or subtly, the problem remains unexplored for the emerging NeRF format. We present StegaNeRF, a method for steganographic information embedding in NeRF renderings. We design an optimization framework allowing accurate hidden information extractions from images rendered by NeRF, while preserving its original visual quality. We perform experimental evaluations of our method under several potential deployment scenarios, and we further discuss the insights discovered through our analysis. StegaNeRF signifies an initial exploration into the novel problem of instilling customizable, imperceptible, and recoverable information to NeRF renderings, with minimal impact to rendered images. Project page: https://xggnet.github.io/StegaNeRF/.
translated by 谷歌翻译
We study fair multi-objective reinforcement learning in which an agent must learn a policy that simultaneously achieves high reward on multiple dimensions of a vector-valued reward. Motivated by the fair resource allocation literature, we model this as an expected welfare maximization problem, for some non-linear fair welfare function of the vector of long-term cumulative rewards. One canonical example of such a function is the Nash Social Welfare, or geometric mean, the log transform of which is also known as the Proportional Fairness objective. We show that even approximately optimal optimization of the expected Nash Social Welfare is computationally intractable even in the tabular case. Nevertheless, we provide a novel adaptation of Q-learning that combines non-linear scalarized learning updates and non-stationary action selection to learn effective policies for optimizing nonlinear welfare functions. We show that our algorithm is provably convergent, and we demonstrate experimentally that our approach outperforms techniques based on linear scalarization, mixtures of optimal linear scalarizations, or stationary action selection for the Nash Social Welfare Objective.
translated by 谷歌翻译
Artificial intelligence (AI) has enormous potential to improve Air Force pilot training by providing actionable feedback to pilot trainees on the quality of their maneuvers and enabling instructor-less flying familiarization for early-stage trainees in low-cost simulators. Historically, AI challenges consisting of data, problem descriptions, and example code have been critical to fueling AI breakthroughs. The Department of the Air Force-Massachusetts Institute of Technology AI Accelerator (DAF-MIT AI Accelerator) developed such an AI challenge using real-world Air Force flight simulator data. The Maneuver ID challenge assembled thousands of virtual reality simulator flight recordings collected by actual Air Force student pilots at Pilot Training Next (PTN). This dataset has been publicly released at Maneuver-ID.mit.edu and represents the first of its kind public release of USAF flight training data. Using this dataset, we have applied a variety of AI methods to separate "good" vs "bad" simulator data and categorize and characterize maneuvers. These data, algorithms, and software are being released as baselines of model performance for others to build upon to enable the AI ecosystem for flight simulator training.
translated by 谷歌翻译