Geometric rectification of images of distorted documents finds wide applications in document digitization and Optical Character Recognition (OCR). Although smoothly curved deformations have been widely investigated by many works, the most challenging distortions, e.g. complex creases and large foldings, have not been studied in particular. The performance of existing approaches, when applied to largely creased or folded documents, is far from satisfying, leaving substantial room for improvement. To tackle this task, knowledge about document rectification should be incorporated into the computation, among which the developability of 3D document models and particular textural features in the images, such as straight lines, are the most essential ones. For this purpose, we propose a general framework of document image rectification in which a computational isometric mapping model is utilized for expressing a 3D document model and its flattening in the plane. Based on this framework, both model developability and textural features are considered in the computation. The experiments and comparisons to the state-of-the-art approaches demonstrated the effectiveness and outstanding performance of the proposed method. Our method is also flexible in that the rectification results can be enhanced by any other methods that extract high-quality feature lines in the images.
translated by 谷歌翻译
In this work, we propose an ID-preserving talking head generation framework, which advances previous methods in two aspects. First, as opposed to interpolating from sparse flow, we claim that dense landmarks are crucial to achieving accurate geometry-aware flow fields. Second, inspired by face-swapping methods, we adaptively fuse the source identity during synthesis, so that the network better preserves the key characteristics of the image portrait. Although the proposed model surpasses prior generation fidelity on established benchmarks, to further make the talking head generation qualified for real usage, personalized fine-tuning is usually needed. However, this process is rather computationally demanding that is unaffordable to standard users. To solve this, we propose a fast adaptation model using a meta-learning approach. The learned model can be adapted to a high-quality personalized model as fast as 30 seconds. Last but not the least, a spatial-temporal enhancement module is proposed to improve the fine details while ensuring temporal coherency. Extensive experiments prove the significant superiority of our approach over the state of the arts in both one-shot and personalized settings.
translated by 谷歌翻译
This paper presents a 3D generative model that uses diffusion models to automatically generate 3D digital avatars represented as neural radiance fields. A significant challenge in generating such avatars is that the memory and processing costs in 3D are prohibitive for producing the rich details required for high-quality avatars. To tackle this problem we propose the roll-out diffusion network (Rodin), which represents a neural radiance field as multiple 2D feature maps and rolls out these maps into a single 2D feature plane within which we perform 3D-aware diffusion. The Rodin model brings the much-needed computational efficiency while preserving the integrity of diffusion in 3D by using 3D-aware convolution that attends to projected features in the 2D feature plane according to their original relationship in 3D. We also use latent conditioning to orchestrate the feature generation for global coherence, leading to high-fidelity avatars and enabling their semantic editing based on text prompts. Finally, we use hierarchical synthesis to further enhance details. The 3D avatars generated by our model compare favorably with those produced by existing generative techniques. We can generate highly detailed avatars with realistic hairstyles and facial hair like beards. We also demonstrate 3D avatar generation from image or text as well as text-guided editability.
translated by 谷歌翻译
Current advances in recommender systems have been remarkably successful in optimizing immediate engagement. However, long-term user engagement, a more desirable performance metric, remains difficult to improve. Meanwhile, recent reinforcement learning (RL) algorithms have shown their effectiveness in a variety of long-term goal optimization tasks. For this reason, RL is widely considered as a promising framework for optimizing long-term user engagement in recommendation. Despite being a promising approach, the application of RL heavily relies on well-designed rewards, but designing rewards related to long-term user engagement is quite difficult. To mitigate the problem, we propose a novel paradigm, Preference-based Recommender systems (PrefRec), which allows RL recommender systems to learn from preferences about users' historical behaviors rather than explicitly defined rewards. Such preferences are easily accessible through techniques such as crowdsourcing, as they do not require any expert knowledge. With PrefRec, we can fully exploit the advantages of RL in optimizing long-term goals, while avoiding complex reward engineering. PrefRec uses the preferences to automatically train a reward function in an end-to-end manner. The reward function is then used to generate learning signals to train the recommendation policy. Furthermore, we design an effective optimization method for PrefRec, which uses an additional value function, expectile regression and reward model pre-training to improve the performance. Extensive experiments are conducted on a variety of long-term user engagement optimization tasks. The results show that PrefRec significantly outperforms previous state-of-the-art methods in all the tasks.
translated by 谷歌翻译
Existing correspondence datasets for two-dimensional (2D) cartoon suffer from simple frame composition and monotonic movements, making them insufficient to simulate real animations. In this work, we present a new 2D animation visual correspondence dataset, AnimeRun, by converting open source three-dimensional (3D) movies to full scenes in 2D style, including simultaneous moving background and interactions of multiple subjects. Our analyses show that the proposed dataset not only resembles real anime more in image composition, but also possesses richer and more complex motion patterns compared to existing datasets. With this dataset, we establish a comprehensive benchmark by evaluating several existing optical flow and segment matching methods, and analyze shortcomings of these methods on animation data. Data, code and other supplementary materials are available at https://lisiyao21.github.io/projects/AnimeRun.
translated by 谷歌翻译
Transformer-based language models have become the standard approach to solving natural language processing tasks. However, industry adoption usually requires the maximum throughput to comply with certain latency constraints that prevents Transformer models from being used in production. To address this gap, model compression techniques such as quantization and pruning may be used to improve inference efficiency. However, these compression techniques require specialized software to apply and deploy at scale. In this work, we propose a new pipeline for creating and running Fast Transformer models on CPUs, utilizing hardware-aware pruning, knowledge distillation, quantization, and our own Transformer inference runtime engine with optimized kernels for sparse and quantized operators. We demonstrate the efficiency of our pipeline by creating a Fast DistilBERT model showing minimal accuracy loss on the question-answering SQuADv1.1 benchmark, and throughput results under typical production constraints and environments. Our results outperform existing state-of-the-art Neural Magic's DeepSparse runtime performance by up to 50% and up to 4.1x performance speedup over ONNX Runtime. Source code is publicly available at https://github.com/intel/intel-extension-for-transformers.
translated by 谷歌翻译
Supervised learning aims to train a classifier under the assumption that training and test data are from the same distribution. To ease the above assumption, researchers have studied a more realistic setting: out-of-distribution (OOD) detection, where test data may come from classes that are unknown during training (i.e., OOD data). Due to the unavailability and diversity of OOD data, good generalization ability is crucial for effective OOD detection algorithms. To study the generalization of OOD detection, in this paper, we investigate the probably approximately correct (PAC) learning theory of OOD detection, which is proposed by researchers as an open problem. First, we find a necessary condition for the learnability of OOD detection. Then, using this condition, we prove several impossibility theorems for the learnability of OOD detection under some scenarios. Although the impossibility theorems are frustrating, we find that some conditions of these impossibility theorems may not hold in some practical scenarios. Based on this observation, we next give several necessary and sufficient conditions to characterize the learnability of OOD detection in some practical scenarios. Lastly, we also offer theoretical supports for several representative OOD detection works based on our OOD theory.
translated by 谷歌翻译
与传统的头像创建管道相反,这是一个昂贵的过程,现代生成方法直接从照片中学习数据分布,而艺术的状态现在可以产生高度的照片现实图像。尽管大量作品试图扩展无条件的生成模型并达到一定程度的可控性,但要确保多视图一致性,尤其是在大型姿势中,仍然具有挑战性。在这项工作中,我们提出了一个3D肖像生成网络,该网络可产生3D一致的肖像,同时根据有关姿势,身份,表达和照明的语义参数可控。生成网络使用神经场景表示在3D中建模肖像,其生成以支持明确控制的参数面模型为指导。尽管可以通过将图像与部分不同的属性进行对比,但可以进一步增强潜在的分离,但在非面积区域(例如,在动画表达式)时,仍然存在明显的不一致。我们通过提出一种体积混合策略来解决此问题,在该策略中,我们通过将动态和静态辐射场融合在一起,形成一个复合输出,并从共同学习的语义场中分割了两个部分。我们的方法在广泛的实验中优于先前的艺术,在自由视点中观看时,在自然照明中产生了逼真的肖像。所提出的方法还证明了真实图像以及室外卡通面孔的概括能力,在实际应用中显示出巨大的希望。其他视频结果和代码将在项目网页上提供。
translated by 谷歌翻译
我们介绍了微博观点摘要(MOS)的任务,并共享3100个金标准意见摘要的数据集,以促进该领域的研究。该数据集包含跨越2年期的推文的摘要,并且涵盖了比任何其他公共Twitter摘要数据集更多的主题。摘要本质上是抽象的,是由熟练的记者创建的,这些记者在将事实信息(主要故事)与作者观点分开的模板之后,总结了新闻文章。我们的方法不同于以前在社交媒体中生成金标准摘要的工作,这些摘要通常涉及选择代表性帖子,从而有利于提取性摘要模型。为了展示数据集的实用性和挑战,我们基准了一系列抽象性和提取性的最先进的摘要模型,并实现良好的性能,前者的表现优于后者。我们还表明,微调对于提高性能和研究使用不同样本量的好处是必要的。
translated by 谷歌翻译
稀疏奖励学习通常在加强学习(RL)方面效率低下。 Hindsight Experience重播(她)已显示出一种有效的解决方案,可以处理低样本效率,这是由于目标重新标记而导致的稀疏奖励效率。但是,她仍然有一个隐含的虚拟阳性稀疏奖励问题,这是由于实现目标而引起的,尤其是对于机器人操纵任务而言。为了解决这个问题,我们提出了一种新型的无模型连续RL算法,称为Relay-HER(RHER)。提出的方法首先分解并重新布置原始的长马任务,以增量复杂性为新的子任务。随后,多任务网络旨在以复杂性的上升顺序学习子任务。为了解决虚拟阳性的稀疏奖励问题,我们提出了一种随机混合的探索策略(RME),在该策略中,在复杂性较低的人的指导下,较高复杂性的子任务的实现目标很快就会改变。实验结果表明,在五个典型的机器人操纵任务中,与香草盖相比,RHER样品效率的显着提高,包括Push,Pickandplace,抽屉,插入物和InstaclePush。提出的RHER方法还应用于从头开始的物理机器人上的接触式推送任务,成功率仅使用250集达到10/10。
translated by 谷歌翻译