元学习会自动渗透一种归纳偏差,其中包括基础学习算法的超参数,通过观察来自有限数量相关任务的数据。本文研究了pac-bayes在元概括差距方面的界限。元化差距包括两个概括差距的来源:分别由每个任务观察到有限数量的任务和数据样本而产生的环境级别和任务级别差距。在本文中,通过上边界任意凸函数,将环境的预期和经验损失与每个任务水平联系起来,我们获得了新的PAC-Bayes边界。使用这些边界,我们开发了新的Pac-Bayes元学习算法。数值示例证明了与先前的pac-bayes界限进行元学习相比,提出的新型界限和算法的优点。
translated by 谷歌翻译
本文旨在应用神经网络算法来预测天然燃气轮机降解的过程响应(NOX排放)。预测建模中考虑了九个不同的过程变量或预测因子。据发现,通过神经网络算法训练的模型应在培训和验证集中使用最新数据,以计算系统退化的影响。训练和验证集的R平方值证明了模型的有效性。残留物图没有任何清晰的模式,表明该模型是合适的。证明了过程变量的重要性的排名,并确认了过程变量的重要性。通过使用神经网络算法训练的模型表明了过程变量的最佳设置,以达到从降解的燃气轮机系统中达到NOX排放的最小值。
translated by 谷歌翻译
虽然基于深度学习的方法表明了皮肤病学诊断任务中的专家级表现,但它们还显示出对某些人口统计学属性,尤其是皮肤类型(例如,光对黑暗)的偏见,必须解决公平的关注。我们提出了圆圈,这是一种肤色不变的深度表示学习方法,可改善皮肤病变分类的公平性。通过利用正规化损失来鼓励具有相同诊断的图像但皮肤类型不同以具有相似的潜在表示,对圆圈进行了对图像进行分类的训练。通过广泛的评估和消融研究,我们证明了在跨越6种菲茨帕特里克皮肤类型和114种疾病的16K+图像上评估时,Circle的表现优于最先进的表现,使用分类精度,平等的机会差异(对于光与黑暗组),和归一化精度范围,这是我们提出的一种新措施,以评估多个皮肤类型组的公平性。
translated by 谷歌翻译
Object-centric representation is an essential abstraction for forward prediction. Most existing forward models learn this representation through extensive supervision (e.g., object class and bounding box) although such ground-truth information is not readily accessible in reality. To address this, we introduce KINet (Keypoint Interaction Network) -- an end-to-end unsupervised framework to reason about object interactions based on a keypoint representation. Using visual observations, our model learns to associate objects with keypoint coordinates and discovers a graph representation of the system as a set of keypoint embeddings and their relations. It then learns an action-conditioned forward model using contrastive estimation to predict future keypoint states. By learning to perform physical reasoning in the keypoint space, our model automatically generalizes to scenarios with a different number of objects, novel backgrounds, and unseen object geometries. Experiments demonstrate the effectiveness of our model in accurately performing forward prediction and learning plannable object-centric representations which can also be used in downstream robotic manipulation tasks.
translated by 谷歌翻译
本文提出了一种数据驱动方法,用于使用收缩理论从离线数据学习收敛控制策略。收缩理论使得构建一种使闭环系统轨迹固有地朝向独特的轨迹的策略构成策略。在技​​术水平,识别收缩度量,该收缩度量是关于机器人的轨迹表现出收缩的距离度量通常是非琐碎的。我们建议共同了解控制政策及其相应的收缩度量,同时执行收缩。为此,我们从由机器人的状态和输入轨迹组成的离线数据集中学习机器人系统的隐式动态模型。使用此学习的动态模型,我们提出了一种用于学习收缩策略的数据增强算法。我们随机生成状态空间中的样本,并通过学习的动态模型在时间上向前传播,以生成辅助样本轨迹。然后,我们学习控制策略和收缩度量,使得来自离线数据集的轨迹之间的距离和我们生成的辅助样品轨迹随时间的减小。我们评估我们提出的模拟机器人目标达成任务的拟议框架的表现,并证明了执行收缩的速度较快,较快的收敛性和更大的学习政策的鲁棒性。
translated by 谷歌翻译
在二进制分类中,不平衡是指一个类受到重量级的情况。这个问题是由于数据收集过程,或者是一个班级的人口中罕见。生物学,医学,工程和社会科学等应用中经常出现不平衡的分类。在本手稿中,我们首次学习不平衡课程大小对高尺寸线性判别分析(LDA)的影响。我们表明,由于一类中的数据稀缺,称为少数阶级,以及特征空间的高度,LDA忽略了少数阶级,产生了最大的错误分类率。然后,我们基于划分和征服技术提出了一种新的硬阈值规则的建设,这减少了错误分类率之间的巨大差异。我们表明所提出的方法是渐近最佳的。我们进一步研究了不平衡案例中的两个已知众所周知的LDA稀疏版本。我们使用模拟评估不同方法的有限样本性能,并通过分析两个真实数据集。结果表明,我们的方法胜过其竞争对手或基于所选特征的小区的较小子集具有可比性,同时计算更有效。
translated by 谷歌翻译