社会互动网络是建立文明的基材。通常,我们与我们喜欢的人建立新的纽带,或者认为通过第三方的干预,我们的关系损害了。尽管它们的重要性和这些过程对我们的生活产生的巨大影响,但对它们的定量科学理解仍处于起步阶段,这主要是由于很难收集大量的社交网络数据集,包括个人属性。在这项工作中,我们对13所学校的真实社交网络进行了彻底的研究,其中3,000多名学生和60,000名宣布正面关系和负面关系,包括对所有学生的个人特征的测试。我们引入了一个度量标准 - “三合会影响”,该指标衡量了最近的邻居在其接触关系中的影响。我们使用神经网络来预测关系,并根据他们的个人属性或三合会的影响来提取两个学生是朋友或敌人的可能性。或者,我们可以使用网络结构的高维嵌入来预测关系。值得注意的是,三合会影响(一个简单的一维度量)在预测两个学生之间的关系方面达到了最高的准确性。我们假设从神经网络中提取的概率 - 三合会影响的功能和学生的个性 - 控制真实社交网络的演变,为这些系统的定量研究开辟了新的途径。
translated by 谷歌翻译
本文探讨了三种新方法,以利用多头自我关注(MSA)机制和存储器层,提高基于深神经网络(DNN)的扬声器验证(SV)系统的性能。首先,我们建议使用名为Class令牌的学习矢量来替换平均全局汇集机制以提取嵌入式。与全局平均水平池不同,我们的提案考虑了输入的时间结构,其中与文本相关的SV任务相关。类令牌连接到第一个MSA层之前的输入,并且其输出状态用于预测类。为了获得额外的稳健性,我们介绍了两种方法。首先,我们已经开发出古典令牌的贝叶斯估计。其次,我们添加了一个蒸馏的代表令牌,用于使用知识蒸馏(KD)哲学培训一对教师 - 学生对网络,与阶级令牌相结合。此蒸馏令牌受过培训,以模仿教师网络的预测,而类令牌复制真实标签。所有策略都在RSR2015-第II和DeepMine-Part 1数据库上进行了测试,用于文本相关的SV,与使用平均池机制相同的架构相比,提供竞争力的结果来提取平均嵌入。
translated by 谷歌翻译
Process monitoring and control are essential in modern industries for ensuring high quality standards and optimizing production performance. These technologies have a long history of application in production and have had numerous positive impacts, but also hold great potential when integrated with Industry 4.0 and advanced machine learning, particularly deep learning, solutions. However, in order to implement these solutions in production and enable widespread adoption, the scalability and transferability of deep learning methods have become a focus of research. While transfer learning has proven successful in many cases, particularly with computer vision and homogenous data inputs, it can be challenging to apply to heterogeneous data. Motivated by the need to transfer and standardize established processes to different, non-identical environments and by the challenge of adapting to heterogeneous data representations, this work introduces the Domain Adaptation Neural Network with Cyclic Supervision (DBACS) approach. DBACS addresses the issue of model generalization through domain adaptation, specifically for heterogeneous data, and enables the transfer and scalability of deep learning-based statistical control methods in a general manner. Additionally, the cyclic interactions between the different parts of the model enable DBACS to not only adapt to the domains, but also match them. To the best of our knowledge, DBACS is the first deep learning approach to combine adaptation and matching for heterogeneous data settings. For comparison, this work also includes subspace alignment and a multi-view learning that deals with heterogeneous representations by mapping data into correlated latent feature spaces. Finally, DBACS with its ability to adapt and match, is applied to a virtual metrology use case for an etching process run on different machine types in semiconductor manufacturing.
translated by 谷歌翻译
Ithaca is a Fuzzy Logic (FL) plugin for developing artificial intelligence systems within the Unity game engine. Its goal is to provide an intuitive and natural way to build advanced artificial intelligence systems, making the implementation of such a system faster and more affordable. The software is made up by a C\# framework and an Application Programming Interface (API) for writing inference systems, as well as a set of tools for graphic development and debugging. Additionally, a Fuzzy Control Language (FCL) parser is provided in order to import systems previously defined using this standard.
translated by 谷歌翻译
An Anomaly Detection (AD) System for Self-diagnosis has been developed for Multiphase Flow Meter (MPFM). The system relies on machine learning algorithms for time series forecasting, historical data have been used to train a model and to predict the behavior of a sensor and, thus, to detect anomalies.
translated by 谷歌翻译
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing. A key issue is how to address the inherent non-linearity of classical deep learning, a problem in the quantum domain due to the fact that the composition of an arbitrary number of quantum gates, consisting of a series of sequential unitary transformations, is intrinsically linear. This problem has been variously approached in the literature, principally via the introduction of measurements between layers of unitary transformations. In this paper, we introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning typically associated with superior generalization performance in the classical domain, specifically, hierarchical feature learning. Our approach generalizes the notion of Quantum Neural Tangent Kernel, which has been used to study the dynamics of classical and quantum machine learning models. The Quantum Path Kernel exploits the parameter trajectory, i.e. the curve delineated by model parameters as they evolve during training, enabling the representation of differential layer-wise convergence behaviors, or the formation of hierarchical parametric dependencies, in terms of their manifestation in the gradient space of the predictor function. We evaluate our approach with respect to variants of the classification of Gaussian XOR mixtures - an artificial but emblematic problem that intrinsically requires multilevel learning in order to achieve optimal class separation.
translated by 谷歌翻译
Aliasing is a highly important concept in signal processing, as careful consideration of resolution changes is essential in ensuring transmission and processing quality of audio, image, and video. Despite this, up until recently aliasing has received very little consideration in Deep Learning, with all common architectures carelessly sub-sampling without considering aliasing effects. In this work, we investigate the hypothesis that the existence of adversarial perturbations is due in part to aliasing in neural networks. Our ultimate goal is to increase robustness against adversarial attacks using explainable, non-trained, structural changes only, derived from aliasing first principles. Our contributions are the following. First, we establish a sufficient condition for no aliasing for general image transformations. Next, we study sources of aliasing in common neural network layers, and derive simple modifications from first principles to eliminate or reduce it. Lastly, our experimental results show a solid link between anti-aliasing and adversarial attacks. Simply reducing aliasing already results in more robust classifiers, and combining anti-aliasing with robust training out-performs solo robust training on $L_2$ attacks with none or minimal losses in performance on $L_{\infty}$ attacks.
translated by 谷歌翻译
The problem of generating an optimal coalition structure for a given coalition game of rational agents is to find a partition that maximizes their social welfare and is known to be NP-hard. This paper proposes GCS-Q, a novel quantum-supported solution for Induced Subgraph Games (ISGs) in coalition structure generation. GCS-Q starts by considering the grand coalition as initial coalition structure and proceeds by iteratively splitting the coalitions into two nonempty subsets to obtain a coalition structure with a higher coalition value. In particular, given an $n$-agent ISG, the GCS-Q solves the optimal split problem $\mathcal{O} (n)$ times using a quantum annealing device, exploring $\mathcal{O}(2^n)$ partitions at each step. We show that GCS-Q outperforms the currently best classical solvers with its runtime in the order of $n^2$ and an expected worst-case approximation ratio of $93\%$ on standard benchmark datasets.
translated by 谷歌翻译
Anomaly Detection is a relevant problem that arises in numerous real-world applications, especially when dealing with images. However, there has been little research for this task in the Continual Learning setting. In this work, we introduce a novel approach called SCALE (SCALing is Enough) to perform Compressed Replay in a framework for Anomaly Detection in Continual Learning setting. The proposed technique scales and compresses the original images using a Super Resolution model which, to the best of our knowledge, is studied for the first time in the Continual Learning setting. SCALE can achieve a high level of compression while maintaining a high level of image reconstruction quality. In conjunction with other Anomaly Detection approaches, it can achieve optimal results. To validate the proposed approach, we use a real-world dataset of images with pixel-based anomalies, with the scope to provide a reliable benchmark for Anomaly Detection in the context of Continual Learning, serving as a foundation for further advancements in the field.
translated by 谷歌翻译
Digital media have enabled the access to unprecedented literary knowledge. Authors, readers, and scholars are now able to discover and share an increasing amount of information about books and their authors. Notwithstanding, digital archives are still unbalanced: writers from non-Western countries are less represented, and such a condition leads to the perpetration of old forms of discrimination. In this paper, we present the Under-Represented Writers Knowledge Graph (URW-KG), a resource designed to explore and possibly amend this lack of representation by gathering and mapping information about works and authors from Wikidata and three other sources: Open Library, Goodreads, and Google Books. The experiments based on KG embeddings showed that the integrated information encoded in the graph allows scholars and users to be more easily exposed to non-Western literary works and authors with respect to Wikidata alone. This opens to the development of fairer and effective tools for author discovery and exploration.
translated by 谷歌翻译