The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
无监督的异常检测和定位是至关重要的任务,因为不可能收集和标记所有可能的异常。许多研究强调了整合本地和全球信息以实现异常分割的重要性。为此,对变压器的兴趣越来越大,它允许对远程内容相互作用进行建模。但是,对于大多数图像量表而言,通过自我注意力的全球互动通常太贵了。在这项研究中,我们介绍了Haloae,这是第一个基于Halonet的局部2D版本的自动编码器。使用Haloae,我们创建了一个混合模型,该模型结合了卷积和局部2D块的自我发项层,并通过单个模型共同执行异常检测和分割。我们在MVTEC数据集上取得了竞争成果,表明结合变压器的视觉模型可以受益于自我发挥操作的本地计算,并为其他应用铺平道路。
translated by 谷歌翻译
在本文中,我们表明,不断学习新任务和记住先前任务的过程引入了未知的隐私风险和挑战以限制隐私损失。基于此,我们介绍了终身DP的正式定义,其中任何数据元组在任何任务的训练集中都受到保护,在始终界限的DP保护下,鉴于越来越多的任务流。始终如一的DP意味着只有一个固定值的DP隐私预算,而不管任务的数量多少。为了保留终身DP,我们提出了一种可扩展和异质的算法,称为L2DP-ML和流批培训,以有效地训练并继续释放L2M型号的新版本,鉴于数据大小和任务训练顺序, ,不影响DP保护私人培训集。端到端的理论分析和彻底的评估表明,我们的机制明显好于保存终身DP的基线方法。 L2DP-ML的实现可在以下网址获得:https://github.com/haiphannjit/privatedeeplearning。
translated by 谷歌翻译
从Chaser Spacecraft发射的系绳网提供了有希望的方法,可以在轨道中捕获和处理大型空间碎片。该系绳网络系统受到影响和致动的几种不确定性来源,影响其净爆发和关闭控制的性能。然而,设计控制动作的早期可靠性的优化方法仍然具有挑战性,并计算到相对于追逐者相对于追逐者的不同发射方案和目标(碎片)状态概括。为了搜索一般和可靠的控制策略,本文介绍了一种加强学习框架,它集成了具有净动力学模拟的近端策略优化(PPO2)方法。后者允许评估基于网络的目标捕获的剧集,并估算捕获质量索引,作为PPO2的奖励反馈。在这里,在任何给定的发射方案下,学习的策略旨在根据移动网和目标的状态来模拟网络结束动作的定时。考虑了随机状态转换模型,以便在国家估算和发射致动中纳入合成不确定性。随着培训期间的显着奖励改进,训练有素的策略表明捕获性能(在广泛的发射/目标场景范围内),接近基于可靠性的优化在各个方案上运行。
translated by 谷歌翻译
本文介绍了FLSYS的设计,实施和评估,一种支持移动应用的深度学习模型的移动云联合学习(FL)系统。 Flsys是创建使用这些模型的FL模型和应用程序开放生态系统的关键组件。 FLSYS旨在使用在智能手机上收集的移动感应数据,平衡模型性能,在手机上使用资源消耗,容忍手机通信故障,并在云中实现可扩展性。在FLSYS中,可以通过不同的应用程序培训云中具有不同流量的不同DL模型,并通过不同的应用程序同时访问和访问。此外,Flsys为第三方应用程序开发人员提供了培训FL模型的共同API。 flsys是在Android和AWS云中实现的。我们在野生FL模型中与人类活动识别(HAR)共同设计了FLSYS。在五个月的时间内,在100+大学生手机的两个地区收集了掌握数据。我们实施了Har-Wild,一种针对移动设备定制的CNN模型,具有数据增强机制,以减轻非独立和相同分布的(非IID)数据的问题,这些数据影响野外的流动模型训练。情绪分析(SA)模型用于演示FLSYS如何有效地支持并发模型,并且它使用446个用户的DataSet具有46,000多个推文。我们对Android手机和仿真器进行了广泛的实验,表明Flsys实现了良好的模型实用性和实际系统性能。
translated by 谷歌翻译
We prove that for $c>0$ a sufficiently small universal constant that a random set of $c d^2/\log^4(d)$ independent Gaussian random points in $\mathbb{R}^d$ lie on a common ellipsoid with high probability. This nearly establishes a conjecture of~\cite{SaundersonCPW12}, within logarithmic factors. The latter conjecture has attracted significant attention over the past decade, due to its connections to machine learning and sum-of-squares lower bounds for certain statistical problems.
translated by 谷歌翻译
Science tests competing theories or models by evaluating the similarity of their predictions against observational experience. Thus, how we measure similarity fundamentally determines what we learn. In machine learning and scientific modeling, similarity metrics are used as objective functions. A classic example being mean squared error, which is the optimal measure of similarity when errors are normally distributed and independent and identically distributed (iid). In many cases, however, the error distribution is neither normal nor iid, so it is left to the scientist to determine an appropriate objective. Here, we review how information theory can guide that selection, then demonstrate the approach with a simple hydrologic model.
translated by 谷歌翻译
One of the major errors affecting GNSS signals in urban canyons is GNSS multipath error. In this work, we develop a Gazebo plugin which utilizes a ray tracing technique to account for multipath effects in a virtual urban canyon environment using virtual satellites. This software plugin balances accuracy and computational complexity to run the simulation in real-time for both software-in-the-loop (SITL) and hardware-in-the-loop (HITL) testing. We also construct a 3D virtual environment of Hong Kong and compare the results from our plugin with the GNSS data in the publicly available Urban-Nav dataset, to validate the efficacy of the proposed Gazebo Plugin. The plugin is openly available to all the researchers in the robotics community. https://github.com/kpant14/multipath_sim
translated by 谷歌翻译
Identifying spurious correlations learned by a trained model is at the core of refining a trained model and building a trustworthy model. We present a simple method to identify spurious correlations that have been learned by a model trained for image classification problems. We apply image-level perturbations and monitor changes in certainties of predictions made using the trained model. We demonstrate this approach using an image classification dataset that contains images with synthetically generated spurious regions and show that the trained model was overdependent on spurious regions. Moreover, we remove the learned spurious correlations with an explanation based learning approach.
translated by 谷歌翻译