本文提出了一种基于对不平衡数据集的图形的新的RWO采样(随机步行过度采样)。在该方法中,引入了基于采样的下采样和过采样方法的两种方案,以使接近信息保持对噪声和异常值的鲁棒。在构建少数群体类上的第一个图形之后,RWO取样将在选定的样本上实现,其余部分保持不变。第二图是为多数类构造的,除去低密度区域(异常值)中的样品被移除。最后,在所提出的方法中,选择高密度区域中的多数类别的样品,并消除其余部分。此外,利用RWO取样,虽然未提高异常值,但虽然少数群体类的边界增加。测试该方法,并将评估措施的数量与先前的九个连续属性数据集进行比较,具有不同的过采集率和一个数据集,用于诊断Covid-19疾病。实验结果表明了所提出的不平衡数据分类方法的高效率和灵活性
translated by 谷歌翻译
Existing automated techniques for software documentation typically attempt to reason between two main sources of information: code and natural language. However, this reasoning process is often complicated by the lexical gap between more abstract natural language and more structured programming languages. One potential bridge for this gap is the Graphical User Interface (GUI), as GUIs inherently encode salient information about underlying program functionality into rich, pixel-based data representations. This paper offers one of the first comprehensive empirical investigations into the connection between GUIs and functional, natural language descriptions of software. First, we collect, analyze, and open source a large dataset of functional GUI descriptions consisting of 45,998 descriptions for 10,204 screenshots from popular Android applications. The descriptions were obtained from human labelers and underwent several quality control mechanisms. To gain insight into the representational potential of GUIs, we investigate the ability of four Neural Image Captioning models to predict natural language descriptions of varying granularity when provided a screenshot as input. We evaluate these models quantitatively, using common machine translation metrics, and qualitatively through a large-scale user study. Finally, we offer learned lessons and a discussion of the potential shown by multimodal models to enhance future techniques for automated software documentation.
translated by 谷歌翻译
In this paper, we reduce the complexity of approximating the correlation clustering problem from $O(m\times\left( 2+ \alpha (G) \right)+n)$ to $O(m+n)$ for any given value of $\varepsilon$ for a complete signed graph with $n$ vertices and $m$ positive edges where $\alpha(G)$ is the arboricity of the graph. Our approach gives the same output as the original algorithm and makes it possible to implement the algorithm in a full dynamic setting where edge sign flipping and vertex addition/removal are allowed. Constructing this index costs $O(m)$ memory and $O(m\times\alpha(G))$ time. We also studied the structural properties of the non-agreement measure used in the approximation algorithm. The theoretical results are accompanied by a full set of experiments concerning seven real-world graphs. These results shows superiority of our index-based algorithm to the non-index one by a decrease of %34 in time on average.
translated by 谷歌翻译
This paper proposes a novel self-supervised based Cut-and-Paste GAN to perform foreground object segmentation and generate realistic composite images without manual annotations. We accomplish this goal by a simple yet effective self-supervised approach coupled with the U-Net based discriminator. The proposed method extends the ability of the standard discriminators to learn not only the global data representations via classification (real/fake) but also learn semantic and structural information through pseudo labels created using the self-supervised task. The proposed method empowers the generator to create meaningful masks by forcing it to learn informative per-pixel as well as global image feedback from the discriminator. Our experiments demonstrate that our proposed method significantly outperforms the state-of-the-art methods on the standard benchmark datasets.
translated by 谷歌翻译
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the bio-medical domain, annotations are subjective and suffer from low inter- and intra-rater reliability. Since annotations only reflect the annotation entity's interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, three categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
translated by 谷歌翻译
Bipedal robots have received much attention because of the variety of motion maneuvers that they can produce, and the many applications they have in various areas including rehabilitation. One of these motion maneuvers is walking. In this study, we presented a framework for the trajectory optimization of a 5-link (planar) Biped Robot using hybrid optimization. The walking is modeled with two phases of single-stance (support) phase and the collision phase. The dynamic equations of the robot in each phase are extracted by the Lagrange method. It is assumed that the robot heel strike to the ground is full plastic. The gait is optimized with a method called hybrid optimization. The objective function of this problem is considered to be the integral of torque-squared along the trajectory, and also various constraints such as zero dynamics are satisfied without any approximation. Furthermore, in a new framework, there is presented a constraint called impact invariance, which ensures the periodicity of the time-varying trajectories. On the other hand, other constraints provide better and more human-like movement.
translated by 谷歌翻译
The importance of humanoid robots in today's world is undeniable, one of the most important features of humanoid robots is the ability to maneuver in environments such as stairs that other robots can not easily cross. A suitable algorithm to generate the path for the bipedal robot to climb is very important. In this paper, an optimization-based method to generate an optimal stairway for under-actuated bipedal robots without an ankle actuator is presented. The generated paths are based on zero and non-zero dynamics of the problem, and according to the satisfaction of the zero dynamics constraint in the problem, tracking the path is possible, in other words, the problem can be dynamically feasible. The optimization method used in the problem is a gradient-based method that has a suitable number of function evaluations for computational processing. This method can also be utilized to go down the stairs.
translated by 谷歌翻译
Finding and localizing the conceptual changes in two scenes in terms of the presence or removal of objects in two images belonging to the same scene at different times in special care applications is of great significance. This is mainly due to the fact that addition or removal of important objects for some environments can be harmful. As a result, there is a need to design a program that locates these differences using machine vision. The most important challenge of this problem is the change in lighting conditions and the presence of shadows in the scene. Therefore, the proposed methods must be resistant to these challenges. In this article, a method based on deep convolutional neural networks using transfer learning is introduced, which is trained with an intelligent data synthesis process. The results of this method are tested and presented on the dataset provided for this purpose. It is shown that the presented method is more efficient than other methods and can be used in a variety of real industrial environments.
translated by 谷歌翻译
Simulation-based falsification is a practical testing method to increase confidence that the system will meet safety requirements. Because full-fidelity simulations can be computationally demanding, we investigate the use of simulators with different levels of fidelity. As a first step, we express the overall safety specification in terms of environmental parameters and structure this safety specification as an optimization problem. We propose a multi-fidelity falsification framework using Bayesian optimization, which is able to determine at which level of fidelity we should conduct a safety evaluation in addition to finding possible instances from the environment that cause the system to fail. This method allows us to automatically switch between inexpensive, inaccurate information from a low-fidelity simulator and expensive, accurate information from a high-fidelity simulator in a cost-effective way. Our experiments on various environments in simulation demonstrate that multi-fidelity Bayesian optimization has falsification performance comparable to single-fidelity Bayesian optimization but with much lower cost.
translated by 谷歌翻译
Ensemble learning combines results from multiple machine learning models in order to provide a better and optimised predictive model with reduced bias, variance and improved predictions. However, in federated learning it is not feasible to apply centralised ensemble learning directly due to privacy concerns. Hence, a mechanism is required to combine results of local models to produce a global model. Most distributed consensus algorithms, such as Byzantine fault tolerance (BFT), do not normally perform well in such applications. This is because, in such methods predictions of some of the peers are disregarded, so a majority of peers can win without even considering other peers' decisions. Additionally, the confidence score of the result of each peer is not normally taken into account, although it is an important feature to consider for ensemble learning. Moreover, the problem of a tie event is often left un-addressed by methods such as BFT. To fill these research gaps, we propose PoSw (Proof of Swarm), a novel distributed consensus algorithm for ensemble learning in a federated setting, which was inspired by particle swarm based algorithms for solving optimisation problems. The proposed algorithm is theoretically proved to always converge in a relatively small number of steps and has mechanisms to resolve tie events while trying to achieve sub-optimum solutions. We experimentally validated the performance of the proposed algorithm using ECG classification as an example application in healthcare, showing that the ensemble learning model outperformed all local models and even the FL-based global model. To the best of our knowledge, the proposed algorithm is the first attempt to make consensus over the output results of distributed models trained using federated learning.
translated by 谷歌翻译