目前,Covid-19的发展使研究人员可以收集2年内积累的数据集并将其用于预测分析。反过来,这可以评估更复杂的预测模型的效率潜力,包括具有不同预测范围的神经网络。在本文中,我们介绍了基于两个国家的区域数据:美国和俄罗斯的区域数据,对不同类型的方法进行了一致的比较研究结果。我们使用了众所周知的统计方法(例如,指数平滑),一种“明天”方法,以及一套经过来自各个地区数据的经典机器学习模型。与他们一起,考虑了基于长期记忆(LSTM)层的神经网络模型,这些培训样本的培训样本汇总了来自两个国家 /地区的所有地区:美国和俄罗斯。根据MAPE度量,使用交叉验证进行效率评估。结果表明,对于以确认的每日案例数量大幅增加的复杂时期,最佳结果是由在两国所有地区训练的LSTM模型显示的,显示平均平均绝对百分比误差(MAPE)为18%在俄罗斯为30%,37%,31%,41%,50%的预测范围为14、28和42天。
translated by 谷歌翻译
In this paper we explore the task of modeling (semi) structured object sequences; in particular we focus our attention on the problem of developing a structure-aware input representation for such sequences. In such sequences, we assume that each structured object is represented by a set of key-value pairs which encode the attributes of the structured object. Given a universe of keys, a sequence of structured objects can then be viewed as an evolution of the values for each key, over time. We encode and construct a sequential representation using the values for a particular key (Temporal Value Modeling - TVM) and then self-attend over the set of key-conditioned value sequences to a create a representation of the structured object sequence (Key Aggregation - KA). We pre-train and fine-tune the two components independently and present an innovative training schedule that interleaves the training of both modules with shared attention heads. We find that this iterative two part-training results in better performance than a unified network with hierarchical encoding as well as over, other methods that use a {\em record-view} representation of the sequence \cite{de2021transformers4rec} or a simple {\em flattened} representation of the sequence. We conduct experiments using real-world data to demonstrate the advantage of interleaving TVM-KA on multiple tasks and detailed ablation studies motivating our modeling choices. We find that our approach performs better than flattening sequence objects and also allows us to operate on significantly larger sequences than existing methods.
translated by 谷歌翻译
Optical coherence tomography (OCT) captures cross-sectional data and is used for the screening, monitoring, and treatment planning of retinal diseases. Technological developments to increase the speed of acquisition often results in systems with a narrower spectral bandwidth, and hence a lower axial resolution. Traditionally, image-processing-based techniques have been utilized to reconstruct subsampled OCT data and more recently, deep-learning-based methods have been explored. In this study, we simulate reduced axial scan (A-scan) resolution by Gaussian windowing in the spectral domain and investigate the use of a learning-based approach for image feature reconstruction. In anticipation of the reduced resolution that accompanies wide-field OCT systems, we build upon super-resolution techniques to explore methods to better aid clinicians in their decision-making to improve patient outcomes, by reconstructing lost features using a pixel-to-pixel approach with an altered super-resolution generative adversarial network (SRGAN) architecture.
translated by 谷歌翻译
Many challenging reinforcement learning (RL) problems require designing a distribution of tasks that can be applied to train effective policies. This distribution of tasks can be specified by the curriculum. A curriculum is meant to improve the results of learning and accelerate it. We introduce Success Induced Task Prioritization (SITP), a framework for automatic curriculum learning, where a task sequence is created based on the success rate of each task. In this setting, each task is an algorithmically created environment instance with a unique configuration. The algorithm selects the order of tasks that provide the fastest learning for agents. The probability of selecting any of the tasks for the next stage of learning is determined by evaluating its performance score in previous stages. Experiments were carried out in the Partially Observable Grid Environment for Multiple Agents (POGEMA) and Procgen benchmark. We demonstrate that SITP matches or surpasses the results of other curriculum design methods. Our method can be implemented with handful of minor modifications to any standard RL framework and provides useful prioritization with minimal computational overhead.
translated by 谷歌翻译
We present a novel dataset named as HPointLoc, specially designed for exploring capabilities of visual place recognition in indoor environment and loop detection in simultaneous localization and mapping. The loop detection sub-task is especially relevant when a robot with an on-board RGB-D camera can drive past the same place (``Point") at different angles. The dataset is based on the popular Habitat simulator, in which it is possible to generate photorealistic indoor scenes using both own sensor data and open datasets, such as Matterport3D. To study the main stages of solving the place recognition problem on the HPointLoc dataset, we proposed a new modular approach named as PNTR. It first performs an image retrieval with the Patch-NetVLAD method, then extracts keypoints and matches them using R2D2, LoFTR or SuperPoint with SuperGlue, and finally performs a camera pose optimization step with TEASER++. Such a solution to the place recognition problem has not been previously studied in existing publications. The PNTR approach has shown the best quality metrics on the HPointLoc dataset and has a high potential for real use in localization systems for unmanned vehicles. The proposed dataset and framework are publicly available: https://github.com/metra4ok/HPointLoc.
translated by 谷歌翻译
Real-life tools for decision-making in many critical domains are based on ranking results. With the increasing awareness of algorithmic fairness, recent works have presented measures for fairness in ranking. Many of those definitions consider the representation of different ``protected groups'', in the top-$k$ ranked items, for any reasonable $k$. Given the protected groups, confirming algorithmic fairness is a simple task. However, the groups' definitions may be unknown in advance. In this paper, we study the problem of detecting groups with biased representation in the top-$k$ ranked items, eliminating the need to pre-define protected groups. The number of such groups possible can be exponential, making the problem hard. We propose efficient search algorithms for two different fairness measures: global representation bounds, and proportional representation. Then we propose a method to explain the bias in the representations of groups utilizing the notion of Shapley values. We conclude with an experimental study, showing the scalability of our approach and demonstrating the usefulness of the proposed algorithms.
translated by 谷歌翻译
The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.
translated by 谷歌翻译
This paper addresses the kinodynamic motion planning for non-holonomic robots in dynamic environments with both static and dynamic obstacles -- a challenging problem that lacks a universal solution yet. One of the promising approaches to solve it is decomposing the problem into the smaller sub problems and combining the local solutions into the global one. The crux of any planning method for non-holonomic robots is the generation of motion primitives that generates solutions to local planning sub-problems. In this work we introduce a novel learnable steering function (policy), which takes into account kinodynamic constraints of the robot and both static and dynamic obstacles. This policy is efficiently trained via the policy optimization. Empirically, we show that our steering function generalizes well to unseen problems. We then plug in the trained policy into the sampling-based and lattice-based planners, and evaluate the resultant POLAMP algorithm (Policy Optimization that Learns Adaptive Motion Primitives) in a range of challenging setups that involve a car-like robot operating in the obstacle-rich parking-lot environments. We show that POLAMP is able to plan collision-free kinodynamic trajectories with success rates higher than 92%, when 50 simultaneously moving obstacles populate the environment showing better performance than the state-of-the-art competitors.
translated by 谷歌翻译
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.
translated by 谷歌翻译
In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.
translated by 谷歌翻译