We propose an approach for semantic imitation, which uses demonstrations from a source domain, e.g. human videos, to accelerate reinforcement learning (RL) in a different target domain, e.g. a robotic manipulator in a simulated kitchen. Instead of imitating low-level actions like joint velocities, our approach imitates the sequence of demonstrated semantic skills like "opening the microwave" or "turning on the stove". This allows us to transfer demonstrations across environments (e.g. real-world to simulated kitchen) and agent embodiments (e.g. bimanual human demonstration to robotic arm). We evaluate on three challenging cross-domain learning problems and match the performance of demonstration-accelerated RL approaches that require in-domain demonstrations. In a simulated kitchen environment, our approach learns long-horizon robot manipulation tasks, using less than 3 minutes of human video demonstrations from a real-world kitchen. This enables scaling robot learning via the reuse of demonstrations, e.g. collected as human videos, for learning in any number of target domains.
translated by 谷歌翻译
如果我们想在将它们部署在现实中之前在模拟中训练机器人,那么假定减少SIM2REAL差距的人似乎很自然,并且几乎是不言而喻的,涉及创建富裕性的模拟器(因为现实就是事实)。我们挑战了这一假设并提出了相反的假设-SIM2REAL转移机器人可以通过较低(不是更高)的保真度模拟来改善。我们使用3种不同的机器人(A1,Aliengo,Spot)对这一假设进行了系统的大规模评估 - 在现实世界中以及2个不同的模拟器(栖息地和Igibson)。我们的结果表明,与期望相反,增加忠诚无助于学习。由于模拟速度缓慢(防止大规模学习)和对模拟物理学不准确的过度拟合,因此性能较差。取而代之的是,使用现实世界数据构建机器人运动的简单模型可以改善学习和概括。
translated by 谷歌翻译
每个房屋都是不同的,每个人都喜欢以特殊方式完成的事情。因此,未来的家庭机器人需要既需要理由就日常任务的顺序性质,又要推广到用户的偏好。为此,我们提出了一个变压器任务计划者(TTP),该计划通过利用基于对象属性的表示来从演示中学习高级动作。TTP可以在多个偏好上进行预训练,并显示了使用单个演示作为模拟洗碗机加载任务中的提示的概括性的概括。此外,我们使用TTP与Franka Panda机器人臂一起展示了现实世界中的重排,并使用单一的人类示范引起了这种情况。
translated by 谷歌翻译
本文解决了机器人的问题,可以协作将电缆带到指定的目标位置,同时避免实时碰撞。引入电缆(与刚性链接相反)使机器人团队能够通过电缆的松弛/拉特开关更改其内在尺寸,从而使机器人团队能够穿越狭窄的空间。但是,这是一个具有挑战性的问题,因为混合模式开关以及多个机器人和负载之间的动态耦合。以前解决此类问题的尝试是离线执行的,并且不考虑避免在线障碍。在本文中,我们介绍了一个级联的计划方案,并采用平行的集中式轨迹优化,涉及混合模式开关。我们还每个机器人开发了一组分散的计划者,这使我们可以解决在线协作负载操作问题的方法。我们开发并演示了第一个能够移动有线电视载荷的首个协作自治框架之一,该框架太重了,无法通过一个机器人移动,通过狭窄空间,具有实时反馈和实验中的反应性计划。
translated by 谷歌翻译
操纵任务,如装载洗碗机,可以被视为不同对象之间的空间约束和关系序列。我们的目标是通过将操纵作为图表构成操作来发现这些规则,其节点代表了对象和目标等任务相关实体,并呈现了从示范中解决此问题的图形神经网络(GNN)策略架构。在我们的实验中,使用20个专家演示的模仿学习(IL)培训的单个GNN策略可以解决块根,重排和洗碗机加载任务;一旦策略了解了空间结构,它就可以概括到更大数量的对象,目标配置,以及从模拟到现实世界。这些实验表明,图形IL可以解决复杂的长地平衡操作问题而不需要详细的任务描述。视频可以找到:https://youtu.be/poxatdaj7ay。
translated by 谷歌翻译
Test-time adaptation is the problem of adapting a source pre-trained model using test inputs from a target domain without access to source domain data. Most of the existing approaches address the setting in which the target domain is stationary. Moreover, these approaches are prone to making erroneous predictions with unreliable uncertainty estimates when distribution shifts occur. Hence, test-time adaptation in the face of non-stationary target domain shift becomes a problem of significant interest. To address these issues, we propose a principled approach, PETAL (Probabilistic lifElong Test-time Adaptation with seLf-training prior), which looks into this problem from a probabilistic perspective using a partly data-dependent prior. A student-teacher framework, where the teacher model is an exponential moving average of the student model naturally emerges from this probabilistic perspective. In addition, the knowledge from the posterior distribution obtained for the source task acts as a regularizer. To handle catastrophic forgetting in the long term, we also propose a data-driven model parameter resetting mechanism based on the Fisher information matrix (FIM). Moreover, improvements in experimental results suggest that FIM based data-driven parameter restoration contributes to reducing the error accumulation and maintaining the knowledge of recent domain by restoring only the irrelevant parameters. In terms of predictive error rate as well as uncertainty based metrics such as Brier score and negative log-likelihood, our method achieves better results than the current state-of-the-art for online lifelong test time adaptation across various benchmarks, such as CIFAR-10C, CIFAR-100C, ImageNetC, and ImageNet3DCC datasets.
translated by 谷歌翻译
3D面部建模一直是计算机视觉和计算机图形学研究的活跃领域,从虚拟化身中的面部表达转移到合成数据生成,助长了应用。现有的3D深度学习生成模型(例如,VAE,gan)允许生成紧凑的面部表征(形状和纹理),可以在形状和外观空间中建模非线性(例如,散射效果,镜面等)。但是,他们缺乏控制微妙表达产生的能力。本文提出了一种新的3D面部生成模型,该模型可以使身份和表达不适,并提供对表达式的颗粒状控制。特别是,我们建议使用一对监督自动编码器和生成对抗网络来产生高质量的3D面,无论是外观和形状而言。实验结果是用整体表达标签或作用单元标签学到的3D面的产生结果表明,我们如何将身份和表达分离;在保留身份的同时,获得精细的表达方式。
translated by 谷歌翻译
尽管现在使用自我监督方法构建的计算机视觉模型现在很普遍,但仍然存在一些重要问题。自我监督的模型是否学习高度冗余的频道功能?如果一个自我监督的网络可以动态选择重要的渠道并摆脱不必要的渠道怎么办?目前,与计算机视觉中的有监督的对手相比,通过自我训练预先训练的Convnet在下游任务上获得了可比的性能。但是,有一些自我监督模型的缺点,包括大量参数,计算昂贵的培训策略以及对下游任务更快推断的明确需求。在这项工作中,我们的目标是通过研究如何将用于监督学习的标准渠道选择方法应用于经过自学训练的网络。我们验证我们在一系列目标预算上验证我们的发现$ t_ {d} $,用于跨不同数据集的图像分类任务的频道计算,特别是CIFAR-10,CIFAR-100和IMAGENET-100,获得了与原始网络的可比性性能when selecting all channels but at a significant reduction in computation reported in terms of FLOPs.
translated by 谷歌翻译
通过利用和适应到目前为止获得的知识,人类具有识别和区分他们不熟悉的实例的天生能力。重要的是,他们实现了这一目标,而不会在早期学习中恶化表现。受此启发,我们识别并制定了NCDWF的新的,务实的问题设置:新颖的类发现而无需忘记,哪个任务是机器学习模型从未标记的数据中逐步发现实例的新颖类别,同时在先前看到的类别上保持其性能。我们提出1)一种生成伪内表示的方法,该表示的代理(不再可用)标记的数据,从而减轻遗忘的遗忘,2)基于相互信息的正常化程序,可以增强对新型类别的无聊发现,而3)a 3)当测试数据包含所见类别和看不见的类别的实例时,简单的已知类标识符可以有助于广义推断。我们介绍了基于CIFAR-10,CIFAR-100和IMAGENET-1000的实验协议,以衡量知识保留和新型类发现之间的权衡。我们广泛的评估表明,现有的模型在确定新类别的同时灾难性地忘记了先前看到的类别,而我们的方法能够有效地在竞争目标之间平衡。我们希望我们的工作能够吸引对这个新确定的实用问题设定的进一步研究。
translated by 谷歌翻译
与当前的AI或机器人系统相比,人类轻松地在环境中导航,使数据收集诸如Trivial之类的任务。但是,人类发现很难模拟隐藏在数据中的复杂关系。 AI系统,尤其是深度学习(DL)算法,令人印象深刻地捕获了这些复杂的关系。共生耦合人类和计算机的优势可以同时最大程度地减少所需的数据并构建复杂的输入到输出映射模型。本文通过展示新型的人机相互作用框架来使用最小的数据执行故障诊断来实现这种耦合。收集用于诊断复杂系统故障的数据是困难且耗时的。最小化所需数据将增加数据驱动模型在诊断故障时的实用性。该框架为人类用户提供指令,以收集数据,以减轻用于训练和测试故障诊断模型的数据之间的差异。该框架由三个组成部分组成:(1)用于开发培训数据集的数据收集的增强学习算法,(2)用于诊断故障的深度学习算法,以及(3)手持式数据收集数据收集的手持式现实应用程序,用于测试数据。所提出的框架提供了超过100 \%的精度,并在一个新的数据集上召回了每个故障条件的一个实例。此外,还进行了一项可用性研究,以评估手持式增强现实应用程序的用户体验,并且所有用户都能够遵循提供的步骤。
translated by 谷歌翻译