尽管现在使用自我监督方法构建的计算机视觉模型现在很普遍,但仍然存在一些重要问题。自我监督的模型是否学习高度冗余的频道功能?如果一个自我监督的网络可以动态选择重要的渠道并摆脱不必要的渠道怎么办?目前,与计算机视觉中的有监督的对手相比,通过自我训练预先训练的Convnet在下游任务上获得了可比的性能。但是,有一些自我监督模型的缺点,包括大量参数,计算昂贵的培训策略以及对下游任务更快推断的明确需求。在这项工作中,我们的目标是通过研究如何将用于监督学习的标准渠道选择方法应用于经过自学训练的网络。我们验证我们在一系列目标预算上验证我们的发现$ t_ {d} $,用于跨不同数据集的图像分类任务的频道计算,特别是CIFAR-10,CIFAR-100和IMAGENET-100,获得了与原始网络的可比性性能when selecting all channels but at a significant reduction in computation reported in terms of FLOPs.
translated by 谷歌翻译
动态模型修剪是最近的方向,其允许不同的子网络中的部署过程中每个输入采样的推断。然而,当前的动态方法依赖于学习的连续通道通过诱导稀疏性损失通过正则化门控。这一提法介绍了平衡不同损失的复杂性(如任务的损失,正规化损失)。此外,基于正则化方法缺乏透明的折衷选择超参数,实现计算的预算。我们的贡献是双重的:1)分离任务和修剪培训。 2)简单的超参数选择,使训练前FLOPS减少估计。在神经科学的赫布理论的启发:“神经元一起火一起丝”,我们提出来预测基于其上一层的活化层口罩方法K过滤器。我们提出的问题,因为自监督二元分类问题。每个掩模预测模块被训练以预测,如果对数似然在当前层中的每个过滤器属于前k激活的过滤器。值k被动态地估计基于使用热图的质量的新颖标准每个输入。我们发现在几个神经结构,如VGG,RESNET和MobileNet上CIFAR和ImageNet数据集实验。在CIFAR,我们得出了类似的精度SOTA方法有15%和24%以上FLOPS减少。同样,在ImageNet,我们达到的精度低下降高达13%的改善FLOPS减少。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
由于稀疏神经网络通常包含许多零权重,因此可以在不降低网络性能的情况下潜在地消除这些不必要的网络连接。因此,设计良好的稀疏神经网络具有显着降低拖鞋和计算资源的潜力。在这项工作中,我们提出了一种新的自动修剪方法 - 稀疏连接学习(SCL)。具体地,重量被重新参数化为可培训权重变量和二进制掩模的元素方向乘法。因此,由二进制掩模完全描述网络连接,其由单位步进函数调制。理论上,从理论上证明了使用直通估计器(STE)进行网络修剪的基本原理。这一原则是STE的代理梯度应该是积极的,确保掩模变量在其最小值处收敛。在找到泄漏的Relu后,SoftPlus和Identity Stes可以满足这个原理,我们建议采用SCL的身份STE以进行离散面膜松弛。我们发现不同特征的面具梯度非常不平衡,因此,我们建议将每个特征的掩模梯度标准化以优化掩码变量训练。为了自动训练稀疏掩码,我们将网络连接总数作为我们的客观函数中的正则化术语。由于SCL不需要由网络层设计人员定义的修剪标准或超级参数,因此在更大的假设空间中探讨了网络,以实现最佳性能的优化稀疏连接。 SCL克服了现有自动修剪方法的局限性。实验结果表明,SCL可以自动学习并选择各种基线网络结构的重要网络连接。 SCL培训的深度学习模型以稀疏性,精度和减少脚波特的SOTA人类设计和自动修剪方法训练。
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
The deployment of deep convolutional neural networks (CNNs) in many real world applications is largely hindered by their high computational cost. In this paper, we propose a novel learning scheme for CNNs to simultaneously 1) reduce the model size; 2) decrease the run-time memory footprint; and 3) lower the number of computing operations, without compromising accuracy. This is achieved by enforcing channel-level sparsity in the network in a simple but effective way. Different from many existing approaches, the proposed method directly applies to modern CNN architectures, introduces minimum overhead to the training process, and requires no special software/hardware accelerators for the resulting models. We call our approach network slimming, which takes wide and large networks as input models, but during training insignificant channels are automatically identified and pruned afterwards, yielding thin and compact models with comparable accuracy. We empirically demonstrate the effectiveness of our approach with several state-of-the-art CNN models, including VGGNet, ResNet and DenseNet, on various image classification datasets. For VGGNet, a multi-pass version of network slimming gives a 20× reduction in model size and a 5× reduction in computing operations.
translated by 谷歌翻译
在过去几年中,神经网络的性能在越来越多的浮点操作(拖鞋)的成本上显着提高。但是,当计算资源有限时,更多的拖鞋可能是一个问题。作为解决这个问题的尝试,修剪过滤器是一种常见的解决方案,但大多数现有的修剪方法不有效地保持模型精度,因此需要大量的芬降时期。在本文中,我们提出了一种自动修剪方法,该方法学习保存的神经元以保持模型精度,同时将絮凝到预定目标。为了完成这项任务,我们介绍了一种可训练的瓶颈,只需要一个单一的单一时期,只需要一个数据集的25.6%(Cifar-10)或7.49%(ILSVRC2012)来了解哪些过滤器。在各种架构和数据集上的实验表明,该方法不仅可以在修剪后保持精度,而且在FineTuning之后也优越现有方法。我们在Reset-50上达到了52.00%的拖鞋,在ILSVRC2012上的灌溉后的前1个精度为47.51%,最先进的(SOTA)精度为76.63%。代码可用(链接匿名审核)。
translated by 谷歌翻译
自我监督学习(SSL)已取得了有希望的下游表现。但是,当面临现实世界应用程序中的各种资源预算时,将一一一个尺寸的多个网络预算到多个网络的巨大计算负担。在本文中,我们提出了基于歧视性SSL的可靠预处理网络(DSPNET),可以立即训练,然后缩小到各种大小的多个子网络,每个尺寸都可以忠实地学习良好的表示,并可以作为良好的初始化,以良好的初始化。具有各种资源预算的下游任务。具体而言,我们通过优雅地集成SSL和知识蒸馏,将微小网络的思想扩展到判别性SSL范式。我们在图像网上与网络与线性评估和半监督评估方案的一个单独预处理的网络表现出可比性或改进的性能,同时降低了较大的培训成本。预处理的模型还可以很好地推广到下游检测和分割任务。代码将公开。
translated by 谷歌翻译
指数移动平均值(EMA或动量)被广泛用于现代自学学习(SSL)方法,例如MOCO,以提高性能。我们证明,这种动量也可以插入无动量的SSL框架(例如SIMCLR),以提高性能。尽管它广泛用作现代SSL框架中的基本组成部分,但动量造成的好处尚未得到充分理解。我们发现它的成功至少可以部分归因于稳定性效应。在第一次尝试中,我们分析了EMA如何影响编码器的每个部分,并揭示了编码器输入附近的部分起着微不足道的作用,而后者则具有更大的影响。通过监测编码器中每个块的输出的总体损失的梯度,我们观察到,最终层在反向传播过程中倾向于比其他层的波动大得多,即稳定性较小。有趣的是,我们表明,使用EMA到SSL编码器的最后一部分,即投影仪,而不是整个深层网络编码器可以提供可比或可比性的性能。我们提出的仅投影仪的动量有助于维持EMA的好处,但避免了双向计算。
translated by 谷歌翻译
神经建筑搜索(NAS)算法可节省人类专家的巨大劳动。最近的进步进一步将计算开销降低到负担得起的水平。但是,由于挑剔的程序和监督的学习范式,将NAS技术部署在现实世界应用程序中仍然很麻烦。在这项工作中,我们通过允许自我审议并保留在搜索阶段发现的伴随的权重,提出了自我监管和举重的神经体系结构搜索(SSWP-NAS)作为当前NAS框架的扩展。因此,我们将NAS的工作流程简化为单阶段和无代理程序。实验表明,通过所提出的框架搜索的架构实现了CIFAR-10,CIFAR-100和Imagenet数据集上的最新精度,而无需使用手动标签。此外,我们表明,使用伴随的权重作为初始化始终优于随机初始化和两阶段的权重预训练方法,在半监督的学习方案下清晰的边缘。代码可在https://github.com/lzvv123456/sswp-nas上公开获得。
translated by 谷歌翻译
While deeper convolutional networks are needed to achieve maximum accuracy in visual perception tasks, for many inputs shallower networks are sufficient. We exploit this observation by learning to skip convolutional layers on a per-input basis. We introduce SkipNet, a modified residual network, that uses a gating network to selectively skip convolutional blocks based on the activations of the previous layer. We formulate the dynamic skipping problem in the context of sequential decision making and propose a hybrid learning algorithm that combines supervised learning and reinforcement learning to address the challenges of non-differentiable skipping decisions. We show SkipNet reduces computation by 30 90% while preserving the accuracy of the original model on four benchmark datasets and outperforms the state-of-the-art dynamic networks and static compression methods. We also qualitatively evaluate the gating policy to reveal a relationship between image scale and saliency and the number of layers skipped.
translated by 谷歌翻译
事实证明,无监督的表示学习方法在学习目标数据集的视觉语义方面有效。这些方法背后的主要思想是,同一图像的不同视图代表相同的语义。在本文中,我们进一步引入了一个附加模块,以促进对样品之间空间跨相关性的知识注入。反过来,这导致了类内部信息的提炼,包括特征级别的位置和同类实例之间的相似性。建议的附加组件可以添加到现有方法中,例如SWAV。稍后,我们可以删除用于推理的附加模块,而无需修改学识的权重。通过一系列广泛的经验评估,我们验证我们的方法在检测类激活图,TOP-1分类准确性和下游任务(例如对象检测)的情况下会提高性能,并具有不同的配置设置。
translated by 谷歌翻译
Network pruning is widely used for reducing the heavy inference cost of deep models in low-resource settings. A typical pruning algorithm is a three-stage pipeline, i.e., training (a large model), pruning and fine-tuning. During pruning, according to a certain criterion, redundant weights are pruned and important weights are kept to best preserve the accuracy. In this work, we make several surprising observations which contradict common beliefs. For all state-of-the-art structured pruning algorithms we examined, fine-tuning a pruned model only gives comparable or worse performance than training that model with randomly initialized weights. For pruning algorithms which assume a predefined target network architecture, one can get rid of the full pipeline and directly train the target network from scratch. Our observations are consistent for multiple network architectures, datasets, and tasks, which imply that: 1) training a large, over-parameterized model is often not necessary to obtain an efficient final model, 2) learned "important" weights of the large model are typically not useful for the small pruned model, 3) the pruned architecture itself, rather than a set of inherited "important" weights, is more crucial to the efficiency in the final model, which suggests that in some cases pruning can be useful as an architecture search paradigm. Our results suggest the need for more careful baseline evaluations in future research on structured pruning methods. We also compare with the "Lottery Ticket Hypothesis" (Frankle & Carbin, 2019), and find that with optimal learning rate, the "winning ticket" initialization as used in Frankle & Carbin (2019) does not bring improvement over random initialization. * Equal contribution. † Work done while visiting UC Berkeley.
translated by 谷歌翻译
Driven by improved architectures and better representation learning frameworks, the field of visual recognition has enjoyed rapid modernization and performance boost in the early 2020s. For example, modern ConvNets, represented by ConvNeXt, have demonstrated strong performance in various scenarios. While these models were originally designed for supervised learning with ImageNet labels, they can also potentially benefit from self-supervised learning techniques such as masked autoencoders (MAE). However, we found that simply combining these two approaches leads to subpar performance. In this paper, we propose a fully convolutional masked autoencoder framework and a new Global Response Normalization (GRN) layer that can be added to the ConvNeXt architecture to enhance inter-channel feature competition. This co-design of self-supervised learning techniques and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation. We also provide pre-trained ConvNeXt V2 models of various sizes, ranging from an efficient 3.7M-parameter Atto model with 76.7% top-1 accuracy on ImageNet, to a 650M Huge model that achieves a state-of-the-art 88.9% accuracy using only public training data.
translated by 谷歌翻译
现代卷积神经网络对图像中的每个像素应用相同的操作。但是,并非所有图像区域都同样重要。为了解决此效率低下,我们提出了一种动态应用在输入图像条件下的卷积的方法。我们引入了一个残留的块,其中一个小的门控分支学会了应评估哪些空间位置。这些离散的门控决策是使用Gumbel-Softmax技巧端到端训练的,结合了稀疏标准。我们对CIFAR,ImageNet和MPII的实验表明,与现有方法相比,我们的方法更好地关注感兴趣的区域和更好的准确性,并且在较低的计算复杂性下。此外,我们使用聚集筛选方法为我们的动态卷积提供了有效的CUDA实施,从而通过MobileNETV2残留块实现了推理速度的显着提高。根据人类姿势估计,一项固有的空间稀疏任务,处理速度增加了60%,而准确性没有损失。
translated by 谷歌翻译
现有的少量学习(FSL)方法依赖于具有大型标记数据集的培训,从而阻止它们利用丰富的未标记数据。从信息理论的角度来看,我们提出了一种有效的无监督的FSL方法,并以自学意义进行学习表示。遵循信息原理,我们的方法通过捕获数据的内在结构来学习全面的表示。具体而言,我们以低偏置的MI估计量来最大化实例及其表示的相互信息(MI),以执行自我监督的预训练。我们的自我监督模型对所见类别的可区分特征的监督预训练没有针对可见的阶级的偏见,从而对看不见的类别进行了更好的概括。我们解释说,受监督的预训练和自我监督的预训练实际上正在最大化不同的MI目标。进一步进行了广泛的实验,以通过各种训练环境分析其FSL性能。令人惊讶的是,结果表明,在适当条件下,自我监管的预训练可以优于监督预训练。与最先进的FSL方法相比,我们的方法在没有基本类别的任何标签的情况下,在广泛使用的FSL基准上实现了可比的性能。
translated by 谷歌翻译
在动态网络修剪中广泛探索了门控模块,以降低深神经网络的运行时间计算成本,同时保留特征的表示。尽管取得了实质性,但现有方法仍然忽略了特征和门分布之间的一致性,这可能导致所门控功能的失真。在本文中,我们提出了一种特征栅极耦合(FGC)方法,其旨在对准特征和栅极的分布。 FGC是一个即插即用模块,它包括以迭代自我监督方式进行的两个步骤组成。在第一步中,FGC利用了特征空间中的$ k $ -nearest邻居方法来探索实例邻域关系,该关系被视为自我监控信号。在第二步中,FGC利用对比学习以产生具有生成的自我监控信号的选通模块,导致特征和栅极空间内的实例邻域关系的对齐。实验结果验证了所提出的FGC方法改善了基线方法,具有显着的边缘,优于最先进的最先进的准确性计算权衡。代码是公开的。
translated by 谷歌翻译
Self-supervised learning (SSL) is rapidly closing BARLOW TWINS is competitive with state-of-the-art methods for self-supervised learning while being conceptually simpler, naturally avoiding trivial constant (i.e. collapsed) embeddings, and being robust to the training batch size.
translated by 谷歌翻译
彩票票证假设(LTH)表明,密集的模型包含高度稀疏的子网(即获奖门票),可以隔离培训以完全准确。尽管做出了许多激动人心的努力,但仍有一个“常识”很少受到挑战:通过迭代级修剪(IMP)发现了一张获胜的票,因此由此产生的修剪子网仅具有非结构化的稀疏性。这一差距限制了在实践中赢得门票的吸引力,因为高度不规则的稀疏模式在硬件上加速的挑战是挑战性的。同时,直接将结构化修剪替换为非结构化的修剪,以更严重地损害绩效,并且通常无法找到获胜的票。在本文中,我们证明了第一个积极的结果是,总体上可以有效地找到结构上稀疏的获胜票。核心思想是在每一轮(非结构化)IMP之后附加“后处理技术”,以实施结构稀疏的形成。具体而言,我们首先在某些被认为很重要的通道中“重新填充”修剪元素,然后“重新组”非零元素以创建灵活的群体结构模式。我们确定的渠道和团体结构子网都赢得了彩票,并以现有硬件很容易支持的大量推理加速。广泛的实验,在多个网络骨架的不同数据集上进行,一致验证了我们的建议,表明LTH的硬件加速障碍现在已被删除。具体而言,结构上的获胜票最多可获得{64.93%,64.84%,60.23%}的运行时间节省,以{36%〜80%,74%,58%}的稀疏性在{Cifar,cifar,tiny-imageNet,imageNet}上保持可比较的精度。代码在https://github.com/vita-group/structure-lth上。
translated by 谷歌翻译