我们提出了一个大规模的真实世界和干净的图像对数据集,以及一种从图像中降低降解的方法,从图像中降低了降解。由于没有用于降低的现实世界数据集,因此当前的最新方法依赖于合成数据,因此受SIM2REAL域间隙的限制。此外,由于没有真实的配对数据集,严格的评估仍然是一个挑战。我们通过通过对非鼻子变化的细致控制收集第一个真实的配对数据集来填补这一空白。我们的数据集对各种现实世界的雨水现象(例如雨条和雨水积累)进行了配对的培训和定量评估。为了学习对雨现象不变的代表,我们提出了一个深层神经网络,该网络通过最大程度地减少雨水和干净图像之间的雨水不变损失来重建基础场景。广泛的实验表明,所提出的数据集使现有的DERAINER受益,我们的模型可以在各种条件下对真实雨水图像的最先进方法优于最先进的方法。
translated by 谷歌翻译
建立一种人类综合人工认知系统,即人工综合情报(AGI),是人工智能(AI)领域的圣杯。此外,实现人工系统实现认知发展的计算模型将是脑和认知科学的优秀参考。本文介绍了一种通过集成元素认知模块来开发认知架构的方法,以实现整个模块的训练。这种方法是基于两个想法:(1)脑激发AI,学习人类脑建筑以构建人类级智能,(2)概率的生成模型(PGM)基础的认知系统,为发展机器人开发认知系统通过整合PGM。发展框架称为全大脑PGM(WB-PGM),其根本地不同于现有的认知架构,因为它可以通过基于感官电机信息的系统不断学习。在这项研究中,我们描述了WB-PGM的基本原理,基于PGM的元素认知模块的当前状态,与人类大脑的关系,对认知模块的整合的方法,以及未来的挑战。我们的研究结果可以作为大脑研究的参考。随着PGMS描述变量之间的明确信息关系,本说明书提供了从计算科学到脑科学的可解释指导。通过提供此类信息,神经科学的研究人员可以向AI和机器人提供的研究人员提供反馈,以及目前模型缺乏对大脑的影响。此外,它可以促进神经认知科学的研究人员以及AI和机器人的合作。
translated by 谷歌翻译
Transparency of Machine Learning models used for decision support in various industries becomes essential for ensuring their ethical use. To that end, feature attribution methods such as SHAP (SHapley Additive exPlanations) are widely used to explain the predictions of black-box machine learning models to customers and developers. However, a parallel trend has been to train machine learning models in collaboration with other data holders without accessing their data. Such models, trained over horizontally or vertically partitioned data, present a challenge for explainable AI because the explaining party may have a biased view of background data or a partial view of the feature space. As a result, explanations obtained from different participants of distributed machine learning might not be consistent with one another, undermining trust in the product. This paper presents an Explainable Data Collaboration Framework based on a model-agnostic additive feature attribution algorithm (KernelSHAP) and Data Collaboration method of privacy-preserving distributed machine learning. In particular, we present three algorithms for different scenarios of explainability in Data Collaboration and verify their consistency with experiments on open-access datasets. Our results demonstrated a significant (by at least a factor of 1.75) decrease in feature attribution discrepancies among the users of distributed machine learning.
translated by 谷歌翻译
Generative models, particularly GANs, have been utilized for image editing. Although GAN-based methods perform well on generating reasonable contents aligned with the user's intentions, they struggle to strictly preserve the contents outside the editing region. To address this issue, we use diffusion models instead of GANs and propose a novel image-editing method, based on pixel-wise guidance. Specifically, we first train pixel-classifiers with few annotated data and then estimate the semantic segmentation map of a target image. Users then manipulate the map to instruct how the image is to be edited. The diffusion model generates an edited image via guidance by pixel-wise classifiers, such that the resultant image aligns with the manipulated map. As the guidance is conducted pixel-wise, the proposed method can create reasonable contents in the editing region while preserving the contents outside this region. The experimental results validate the advantages of the proposed method both quantitatively and qualitatively.
translated by 谷歌翻译
Artificial life is a research field studying what processes and properties define life, based on a multidisciplinary approach spanning the physical, natural and computational sciences. Artificial life aims to foster a comprehensive study of life beyond "life as we know it" and towards "life as it could be", with theoretical, synthetic and empirical models of the fundamental properties of living systems. While still a relatively young field, artificial life has flourished as an environment for researchers with different backgrounds, welcoming ideas and contributions from a wide range of subjects. Hybrid Life is an attempt to bring attention to some of the most recent developments within the artificial life community, rooted in more traditional artificial life studies but looking at new challenges emerging from interactions with other fields. In particular, Hybrid Life focuses on three complementary themes: 1) theories of systems and agents, 2) hybrid augmentation, with augmented architectures combining living and artificial systems, and 3) hybrid interactions among artificial and biological systems. After discussing some of the major sources of inspiration for these themes, we will focus on an overview of the works that appeared in Hybrid Life special sessions, hosted by the annual Artificial Life Conference between 2018 and 2022.
translated by 谷歌翻译
Vehicle routing problems and other combinatorial optimization problems have been approximately solved by reinforcement learning agents with policies based on encoder-decoder models with attention mechanisms. These techniques are of substantial interest but still cannot solve the complex routing problems that arise in a realistic setting which can have many trucks and complex requirements. With the aim of making reinforcement learning a viable technique for supply chain optimization, we develop new extensions to encoder-decoder models for vehicle routing that allow for complex supply chains using classical computing today and quantum computing in the future. We make two major generalizations. First, our model allows for routing problems with multiple trucks. Second, we move away from the simple requirement of having a truck deliver items from nodes to one special depot node, and instead allow for a complex tensor demand structure. We show how our model, even if trained only for a small number of trucks, can be embedded into a large supply chain to yield viable solutions.
translated by 谷歌翻译
Problem instances of a size suitable for practical applications are not likely to be addressed during the noisy intermediate-scale quantum (NISQ) period with (almost) pure quantum algorithms. Hybrid classical-quantum algorithms have potential, however, to achieve good performance on much larger problem instances. We investigate one such hybrid algorithm on a problem of substantial importance: vehicle routing for supply chain logistics with multiple trucks and complex demand structure. We use reinforcement learning with neural networks with embedded quantum circuits. In such neural networks, projecting high-dimensional feature vectors down to smaller vectors is necessary to accommodate restrictions on the number of qubits of NISQ hardware. However, we use a multi-head attention mechanism where, even in classical machine learning, such projections are natural and desirable. We consider data from the truck routing logistics of a company in the automotive sector, and apply our methodology by decomposing into small teams of trucks, and we find results comparable to human truck assignment.
translated by 谷歌翻译
This study proposed a novel robotic gripper that can achieve grasping and infinite wrist twisting motions using a single actuator. The gripper is equipped with a differential gear mechanism that allows switching between the grasping and twisting motions according to the magnitude of the tip force applied to the finger. The grasping motion is activated when the tip force is below a set value, and the wrist twisting motion is activated when the tip force exceeds this value. "Twist grasping," a special grasping mode that allows the wrapping of a flexible thin object around the fingers of the gripper, can be achieved by the twisting motion. Twist grasping is effective for handling objects with flexible thin parts, such as laminated packaging pouches, that are difficult to grasp using conventional antipodal grasping. In this study, the gripper design is presented, and twist grasping is analyzed. The gripper performance is experimentally validated.
translated by 谷歌翻译
Robotic hands with soft surfaces can perform stable grasping, but the high friction of the soft surfaces makes it difficult to release objects, or to perform operations that require sliding. To solve this issue, we previously developed a contact area variable surface (CAVS), whose friction changed according to the load. However, only our fundamental results were previously presented, with detailed analyses not provided. In this study, we first investigated the CAVS friction anisotropy, and demonstrated that the longitudinal direction exhibited a larger ratio of friction change. Next, we proposed a sensible CAVS, capable of providing a variable-friction mechanism, and tested its sensing and control systems in operations requiring switching between sliding and stable-grasping modes. Friction sensing was performed using an embedded camera, and we developed a gripper using the sensible CAVS, considering the CAVS friction anisotropy. In CAVS, the low-friction mode corresponds to a small grasping force, while the high-friction mode corresponds to a greater grasping force. Therefore, by controlling only the friction mode, the gripper mode can be set to either the sliding or stable-grasping mode. Based on this feature, a methodology for controlling the contact mode was constructed. We demonstrated a manipulation involving sliding and stable grasping, and thus verified the efficacy of the developed sensible CAVS.
translated by 谷歌翻译
This letter proposes a novel single-fingered reconfigurable robotic gripper for grasping objects in narrow working spaces. The finger of the developed gripper realizes two configurations, namely, the insertion and grasping modes, using only a single motor. In the insertion mode, the finger assumes a thin shape such that it can insert its tip into a narrow space. The grasping mode of the finger is activated through a folding mechanism. Mode switching can be achieved in two ways: switching the mode actively by a motor, or combining passive rotation of the fingertip through contact with the support surface and active motorized construction of the claw. The latter approach is effective when it is unclear how much finger insertion is required for a specific task. The structure provides a simple control scheme. The performance of the proposed robotic gripper design and control methodology was experimentally evaluated. The minimum width of the insertion space required to grasp an object is 4 mm (1 mm, when using a strategy).
translated by 谷歌翻译