受到控制障碍功能(CBF)在解决安全性方面的成功以及数据驱动技术建模功能的兴起的启发,我们提出了一种使用高斯流程(GPS)在线合成CBF的非参数方法。 CBF等数学结构通过先验设计候选功能来实现安全性。但是,设计这样的候选功能可能具有挑战性。这种设置的一个实际示例是在需要确定安全且可导航区域的灾难恢复方案中设计CBF。在这样的示例中,安全性边界未知,不能先验设计。在我们的方法中,我们使用安全样本或观察结果来在线构建CBF,通过在这些样品上具有灵活的GP,并称我们为高斯CBF的配方。除非参数外,例如分析性障碍性和稳健的不确定性估计,GP具有有利的特性。这允许通过合并方差估计来实现具有高安全性保证的后部组件,同时还计算封闭形式中相关的部分导数以实现安全控制。此外,我们方法的合成安全函数允许根据数据任意更改相应的安全集,从而允许非Convex安全集。我们通过证明对固定但任意的安全集和避免碰撞的安全性在线构建安全集的安全控制,从而在四极管上验证了我们的方法。最后,我们将高斯CBF与常规的CBF并列,在嘈杂状态下,以突出其灵活性和对噪声的鲁棒性。实验视频可以在:https://youtu.be/hx6uokvcigk上看到。
translated by 谷歌翻译
Search and Rescue (SAR) missions in remote environments often employ autonomous multi-robot systems that learn, plan, and execute a combination of local single-robot control actions, group primitives, and global mission-oriented coordination and collaboration. Often, SAR coordination strategies are manually designed by human experts who can remotely control the multi-robot system and enable semi-autonomous operations. However, in remote environments where connectivity is limited and human intervention is often not possible, decentralized collaboration strategies are needed for fully-autonomous operations. Nevertheless, decentralized coordination may be ineffective in adversarial environments due to sensor noise, actuation faults, or manipulation of inter-agent communication data. In this paper, we propose an algorithmic approach based on adversarial multi-agent reinforcement learning (MARL) that allows robots to efficiently coordinate their strategies in the presence of adversarial inter-agent communications. In our setup, the objective of the multi-robot team is to discover targets strategically in an obstacle-strewn geographical area by minimizing the average time needed to find the targets. It is assumed that the robots have no prior knowledge of the target locations, and they can interact with only a subset of neighboring robots at any time. Based on the centralized training with decentralized execution (CTDE) paradigm in MARL, we utilize a hierarchical meta-learning framework to learn dynamic team-coordination modalities and discover emergent team behavior under complex cooperative-competitive scenarios. The effectiveness of our approach is demonstrated on a collection of prototype grid-world environments with different specifications of benign and adversarial agents, target locations, and agent rewards.
translated by 谷歌翻译
Accurate and robust extrinsic calibration is necessary for deploying autonomous systems which need multiple sensors for perception. In this paper, we present a robust system for real-time extrinsic calibration of multiple lidars in vehicle base frame without the need for any fiducial markers or features. We base our approach on matching absolute GNSS and estimated lidar poses in real-time. Comparing rotation components allows us to improve the robustness of the solution than traditional least-square approach comparing translation components only. Additionally, instead of comparing all corresponding poses, we select poses comprising maximum mutual information based on our novel observability criteria. This allows us to identify a subset of the poses helpful for real-time calibration. We also provide stopping criteria for ensuring calibration completion. To validate our approach extensive tests were carried out on data collected using Scania test vehicles (7 sequences for a total of ~ 6.5 Km). The results presented in this paper show that our approach is able to accurately determine the extrinsic calibration for various combinations of sensor setups.
translated by 谷歌翻译
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs). Quantization is a technique for making neural networks more efficient by running them using low-bit integer arithmetic and is therefore commonly adopted in industry. Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization, and certification of the quantized representation is necessary to guarantee robustness. In this work, we present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs. Inspired by advances in robust learning of non-quantized networks, our training algorithm computes the gradient of an abstract representation of the actual network. Unlike existing approaches, our method can handle the discrete semantics of QNNs. Based on QA-IBP, we also develop a complete verification procedure for verifying the adversarial robustness of QNNs, which is guaranteed to terminate and produce a correct answer. Compared to existing approaches, the key advantage of our verification procedure is that it runs entirely on GPU or other accelerator devices. We demonstrate experimentally that our approach significantly outperforms existing methods and establish the new state-of-the-art for training and certifying the robustness of QNNs.
translated by 谷歌翻译
While the NLP community is generally aware of resource disparities among languages, we lack research that quantifies the extent and types of such disparity. Prior surveys estimating the availability of resources based on the number of datasets can be misleading as dataset quality varies: many datasets are automatically induced or translated from English data. To provide a more comprehensive picture of language resources, we examine the characteristics of 156 publicly available NLP datasets. We manually annotate how they are created, including input text and label sources and tools used to build them, and what they study, tasks they address and motivations for their creation. After quantifying the qualitative NLP resource gap across languages, we discuss how to improve data collection in low-resource languages. We survey language-proficient NLP researchers and crowd workers per language, finding that their estimated availability correlates with dataset availability. Through crowdsourcing experiments, we identify strategies for collecting high-quality multilingual data on the Mechanical Turk platform. We conclude by making macro and micro-level suggestions to the NLP community and individual researchers for future multilingual data development.
translated by 谷歌翻译
This paper surveys some recent developments in measures of association related to a new coefficient of correlation introduced by the author. A straightforward extension of this coefficient to standard Borel spaces (which includes all Polish spaces), overlooked in the literature so far, is proposed at the end of the survey.
translated by 谷歌翻译
Linear classifier probes are frequently utilized to better understand how neural networks function. Researchers have approached the problem of determining unit importance in neural networks by probing their learned, internal representations. Linear classifier probes identify highly selective units as the most important for network function. Whether or not a network actually relies on high selectivity units can be tested by removing them from the network using ablation. Surprisingly, when highly selective units are ablated they only produce small performance deficits, and even then only in some cases. In spite of the absence of ablation effects for selective neurons, linear decoding methods can be effectively used to interpret network function, leaving their effectiveness a mystery. To falsify the exclusive role of selectivity in network function and resolve this contradiction, we systematically ablate groups of units in subregions of activation space. Here, we find a weak relationship between neurons identified by probes and those identified by ablation. More specifically, we find that an interaction between selectivity and the average activity of the unit better predicts ablation performance deficits for groups of units in AlexNet, VGG16, MobileNetV2, and ResNet101. Linear decoders are likely somewhat effective because they overlap with those units that are causally important for network function. Interpretability methods could be improved by focusing on causally important units.
translated by 谷歌翻译
Federated learning (FL) on deep neural networks facilitates new applications at the edge, especially for wearable and Internet-of-Thing devices. Such devices capture a large and diverse amount of data, but they have memory, compute, power, and connectivity constraints which hinder their participation in FL. We propose Centaur, a multitier FL framework, enabling ultra-constrained devices to efficiently participate in FL on large neural nets. Centaur combines two major ideas: (i) a data selection scheme to choose a portion of samples that accelerates the learning, and (ii) a partition-based training algorithm that integrates both constrained and powerful devices owned by the same user. Evaluations, on four benchmark neural nets and three datasets, show that Centaur gains ~10% higher accuracy than local training on constrained devices with ~58% energy saving on average. Our experimental results also demonstrate the superior efficiency of Centaur when dealing with imbalanced data, client participation heterogeneity, and various network connection probabilities.
translated by 谷歌翻译
We study the problem of learning controllers for discrete-time non-linear stochastic dynamical systems with formal reach-avoid guarantees. This work presents the first method for providing formal reach-avoid guarantees, which combine and generalize stability and safety guarantees, with a tolerable probability threshold $p\in[0,1]$ over the infinite time horizon. Our method leverages advances in machine learning literature and it represents formal certificates as neural networks. In particular, we learn a certificate in the form of a reach-avoid supermartingale (RASM), a novel notion that we introduce in this work. Our RASMs provide reachability and avoidance guarantees by imposing constraints on what can be viewed as a stochastic extension of level sets of Lyapunov functions for deterministic systems. Our approach solves several important problems -- it can be used to learn a control policy from scratch, to verify a reach-avoid specification for a fixed control policy, or to fine-tune a pre-trained policy if it does not satisfy the reach-avoid specification. We validate our approach on $3$ stochastic non-linear reinforcement learning tasks.
translated by 谷歌翻译
大多数腿部机器人都是由串行安装链路和执行器的腿部结构构建的,并通过复杂的控制器和传感器反馈来控制。相比之下,动物发展了多段腿,关节之间的机械耦合以及多段的脚。它们在所有地形上运行敏捷,可以说是通过更简单的运动控制。在这里,我们专注于开发抗原在自然地形上也滑落和下沉的脚步机制。我们提出了安装在具有多接头机械肌腱耦合的鸟类灵感机器人腿上的多段脚的首先结果。我们的单段和两段机械自适应的脚显示在开始滑动之前,在多个软和硬质基材上显示了可行的水平力。我们还观察到,与球形和圆柱 - 脚相比,分割的脚减少了软底物上的下沉。我们报告了多段脚如何提供非常适合双皮亚机器人的可行压力点的范围范围,还适用于斜坡和自然地形上的四倍机器人。我们的结果还提供了对诸如级别鸟类等动物的分段脚的功能理解。
translated by 谷歌翻译