自主物理科学领域 - 机器学习指南和从闭环中的实验中学习的领域正在迅速增长。自主系统使科学家能够更聪明,学习速度更快,并在其研究中花费更少的资源。该领域有望改善各种设施的性能,例如实验室,研发管道和仓库。随着自主系统的数量,能力和复杂性的增长,出现了新的挑战 - 这些系统将如何在大型设施中共同运行?我们探索了这个问题的一种解决方案 - 一个多代理框架。我们展示了一个具有1)具有现实资源限制的模拟设施,例如设备使用限制,2)具有多种学习能力和目标的机器学习代理,对实验室仪器的控制以及运行研究活动的能力以及3)网络这些代理可以共享知识并共同努力以实现个人或集体目标。该框架被称为多代理自治设施 - 可扩展的框架又称多任务。多任务允许整个设施的模拟,包括代理启动和代理代理交互。框架模块化使真实世界的自主空间可以阶段上线,模拟仪器逐渐被现实世界的仪器代替。在这里,我们通过模拟材料实验室中的材料探索和优化的现实世界材料科学挑战演示了框架。我们希望该框架在基于代理的设施控制场景中开辟了新的研究领域基于游戏理论。
translated by 谷歌翻译
下一代物理科学涉及机器人科学家 - 自主物理科学系统,能够在封闭环中实验设计,执行和分析。这样的系统已显示出对科学探索和发现的现实成功,包括首次发现一流的材料。为了构建和使用这些系统,下一代劳动力需要在不同领域的专业知识,包括ML,控制系统,测量科学,材料合成,决策理论等。但是,教育滞后。教育工作者需要一个低成本,易于使用的平台来教授所需的技能。行业还可以使用这样的平台来开发和评估自主物理科学方法论。我们介绍了科学教育的下一代,这是建立低成本自治科学家的套件。该套件在马里兰州大学的两门课程中用于教授本科和研究生自治物理科学。我们以自主模型探索,优化和确定的双重任务来讨论其在课程中的用途及其更大的能力,并以自主实验的“发现”为例。
translated by 谷歌翻译
在过去的几十年中,人工智能(AI)和更具体地进行机械学习的应用,对物理科学进行了显着扩展。特别是,科学知情的AI或科学AI从专注于数据分析到现在控制闭环自主系统中的实验设计,仿真,执行和分析。客串(闭环自主材料勘探和优化)算法采用科学AI来解决两项任务:学习材料系统的组成结构关系,鉴定具有最佳功能性的材料组合物。通过对此进行整合,对构图相图进行了筛选的加速材料,导致发现最佳相变存储器材料。这一成功的关键是能够引导后续测量来最大化构图结构关系或相位图的知识。在这项工作中,我们调查将不同水平的先前物理知识纳入Careo的自主阶段映射的益处。这包括使用来自AFLOW存储库的AB-Initio相位边界数据,这些数据已被示出为在作为先前使用时优化Careo的搜索。
translated by 谷歌翻译
许多具有挑战性的现实世界问题需要部署合奏多个互补学习模型,以达到可接受的绩效水平。虽然有效,但将整个合奏应用于每个样本都是昂贵且通常不必要的。深钢筋学习(DRL)提供了一种具有成本效益的替代方案,其中检测器是根据其前辈的输出动态选择的,其实用性加权其计算成本。尽管它们具有潜力,但基于DRL的解决方案并未在这种能力中广泛使用,部分原因是在为每个新任务配置奖励功能,DRL代理对数据变化的不可预测反应以及无法使用常见的反应的困难。性能指标(例如TPR/FPR)指导该算法的性能。在这项研究中,我们提出了用于微调和校准基于DRL的策略的方法,以便它们可以满足多个绩效目标。此外,我们提出了一种将有效的安全策略从一个数据集传输到另一个数据集的方法。最后,我们证明我们的方法对对抗性攻击非常强大。
translated by 谷歌翻译
在元加强学习(META RL)中,代理商从一组培训任务中学习如何快速解决从相同的任务分布中绘制的新任务。最佳的元rl政策,又称贝叶斯最佳行为,是很好的定义,并保证了对任务分布的预期最佳奖励。我们在这项工作中探讨的问题是,需要多少培训任务来确保具有很高可能性的大致最佳行为。最近的工作为无模型设置提供了第一个这样的PAC分析,其中从培训任务中学到了依赖历史的政策。在这项工作中,我们提出了一种不同的方法:使用密度估计技术直接学习任务分布,然后对学习任务分布进行培训。我们表明,我们的方法导致界限取决于任务分布的维度。特别是,在任务分布中处于低维多方面的环境中,我们将分析扩展到使用降低性降低技术并说明这种结构,从而比以前的工作明显更好,这严格取决于状态和行动的数量。我们方法的关键是内核密度估计方法所隐含的正则化。我们进一步证明,当“插入”最先进的Varibad Meta RL算法时,这种正则化在实践中很有用。
translated by 谷歌翻译
场景理解是一个活跃的研究区域。商业深度传感器(如Kinect)在过去几年中启用了几个RGB-D数据集的发布,它在3D场景理解中产生了新的方法。最近,在Apple的iPad和iPhone中推出LIDAR传感器,可以在他们通常使用的设备上访问高质量的RGB-D数据。这在对计算机视觉社区以及应用程序开发人员来说,这是一个全新的时代。现场理解的基本研究与机器学习的进步一起可以影响人们的日常经历。然而,将这些现场改变为现实世界经验的理解方法需要额外的创新和发展。在本文中,我们介绍了Arkitscenes。它不仅是具有现在广泛可用深度传感器的第一个RGB-D数据集,而且是我们最好的知识,它也是了解数据发布的最大的室内场景。除了来自移动设备的原始和处理的数据之外,Arkitscenes还包括使用固定激光扫描仪捕获的高分辨率深度图,以及手动标记为家具的大型分类的3D定向边界盒。我们进一步分析了两个下游任务数据的有用性:3D对象检测和色彩引导深度上采样。我们展示了我们的数据集可以帮助推动现有最先进的方法的边界,并引入了更好代表真实情景的新挑战。
translated by 谷歌翻译
给定数据集和损失函数的Coreset通常是一个小称定近似于这个损失从一组给定的查询每次查询。 Coresets已经证明是在许多应用中非常有用。然而,coresets建设中存在的问题依赖的方式完成,这可能需要时间来进行设计和证明coreset的正确性特定家庭的查询。这可能会限制coresets在实际应用中使用。此外,小coresets可证明是不存在的诸多问题。为了解决这些限制,我们提出了建设coresets的通用,基于学习的算法。我们的方法提供coreset一个新的定义,这是标准的定义和目标的接近在通过查询原始数据的\ {EMPH平均}损失自然放松。这允许我们使用一个学习模式来计算给定的输入小coreset相对于使用查询的训练集一个给定的损失函数。我们得出了该方法的正式担保。深网和经典的机器学习问题的实验评估表明,我们了解到coresets产量比最坏情况下的理论保证现有算法(可能在实践中过于悲观)相媲美,甚至更好的效果。此外,我们的方法应用于深网络修剪提供了一个完整的深网络的第一coreset,即压缩所有网络一次,而不是由层或类似的分而治之方法层。
translated by 谷歌翻译
对抗性学习的研究主要集中在均匀的非结构化数据集上,这些数据集通常自然地映射到问题空间中。将功能空间攻击在异质数据集中倒入问题空间更具挑战性,尤其是找到要执行的扰动的任务。这项工作提出了一种正式的搜索策略:“特征重要的指导攻击”(FIGA),它在异质表格数据集的特征空间中发现扰动以产生逃避攻击。我们首先在特征空间中以及在问题空间中演示FIGA。 FIGA不对捍卫模型的学习算法没有任何先验知识,也不需要任何梯度信息。 FIGA假定对特征表示形式的知识和辩护模型数据集的平均特征值。通过在目标类方向上扰动输入的最重要特征,FIGA利用具有重要的排名。虽然FIGA在概念上与使用特征选择过程(例如模仿攻击)的其他作品相似,但我们将具有三个可调参数的攻击算法形式化,并在表格数据集上研究FIGA的强度。我们通过在四个不同的表网络钓鱼数据集中训练的网络钓鱼检测模型和一个平均成功率为94%的金融数据集来证明FIGA的有效性。我们通过限制可能在网络钓鱼域中有效且可行的扰动,将FIGA扩展到网络钓鱼问题空间。我们生成有效的对抗网站,这些网站在视觉上与其不受干扰的对应物相同,并使用它们来攻击六个表格的ML模型,达到13.05%的平均成功率。
translated by 谷歌翻译
保留保护解决方案使公司能够在履行政府法规的同时将机密数据卸载到第三方服务。为了实现这一点,它们利用了各种密码技术,例如同性恋加密(HE),其允许对加密数据执行计算。大多数他计划以SIMD方式工作,数据包装方法可以显着影响运行时间和内存成本。找到导致最佳性能实现的包装方法是一个艰难的任务。我们提出了一种简单而直观的框架,摘要为用户提供包装决定。我们解释其底层数据结构和优化器,并提出了一种用于执行2D卷积操作的新算法。我们使用此框架来实现他友好的AlexNet版本,在三分钟内运行,比其他最先进的解决方案更快的数量级,只能使用他。
translated by 谷歌翻译
Variational inference uses optimization, rather than integration, to approximate the marginal likelihood, and thereby the posterior, in a Bayesian model. Thanks to advances in computational scalability made in the last decade, variational inference is now the preferred choice for many high-dimensional models and large datasets. This tutorial introduces variational inference from the parametric perspective that dominates these recent developments, in contrast to the mean-field perspective commonly found in other introductory texts.
translated by 谷歌翻译