扩散降级概率模型(DDPM)和视觉变压器(VIT)分别在生成任务和判别任务中表现出重大进展,到目前为止,这些模型已在其自身领域中很大程度上开发出来。在本文中,我们通过将VIT结构集成到DDPM之间,建立DDPM和VIT之间的直接联系,并引入一种称为“生成Vit(Genvit)”的新生成模型。VIT的建模灵活性使我们能够将Genvit进一步扩展到混合判别生成建模,并引入混合VIT(HYBVIT)。我们的工作是最早探索单个VIT以共同探索图像生成和分类的人之一。我们进行了一系列实验,以分析提出的模型的性能,并证明它们在生成和判别任务中都超过了先前的最新技术。我们的代码和预培训模型可以在https://github.com/sndnyang/diffusion_vit中找到。
translated by 谷歌翻译
我们可以在单个网络中训练混合歧视生成模型吗?最近在肯定中回答了这个问题,引入了基于联合能量的模型(JEM)的领域,该模型(JEM)同时达到了高分类的精度和图像生成质量。尽管有最近的进步,但仍存在两个性能差距:标准软磁性分类器的准确性差距,以及最先进的生成模型的发电质量差距。在本文中,我们引入了各种培训技术,以弥合JEM的准确性差距和一代质量差距。 1)我们结合了最近提出的清晰度最小化(SAM)框架来训练JEM,从而促进了能量景观的平滑度和JEM的普遍性。 2)我们将数据扩展排除在JEM的最大似然估计管道中,并减轻数据增强对图像生成质量的负面影响。在多个数据集上进行的广泛实验表明,我们的Sada-Jem在图像分类,图像产生,校准,分布外检测和对抗性鲁棒性方面实现了最先进的表现,并优于JEM JEM。
translated by 谷歌翻译
Score-based diffusion models have captured widespread attention and funded fast progress of recent vision generative tasks. In this paper, we focus on diffusion model backbone which has been much neglected before. We systematically explore vision Transformers as diffusion learners for various generative tasks. With our improvements the performance of vanilla ViT-based backbone (IU-ViT) is boosted to be on par with traditional U-Net-based methods. We further provide a hypothesis on the implication of disentangling the generative backbone as an encoder-decoder structure and show proof-of-concept experiments verifying the effectiveness of a stronger encoder for generative tasks with ASymmetriC ENcoder Decoder (ASCEND). Our improvements achieve competitive results on CIFAR-10, CelebA, LSUN, CUB Bird and large-resolution text-to-image tasks. To the best of our knowledge, we are the first to successfully train a single diffusion model on text-to-image task beyond 64x64 resolution. We hope this will motivate people to rethink the modeling choices and the training pipelines for diffusion-based generative models.
translated by 谷歌翻译
We present an end-to-end Transformer based Latent Diffusion model for image synthesis. On the ImageNet class conditioned generation task we show that a Transformer based Latent Diffusion model achieves a 14.1FID which is comparable to the 13.1FID score of a UNet based architecture. In addition to showing the application of Transformer models for Diffusion based image synthesis this simplification in architecture allows easy fusion and modeling of text and image data. The multi-head attention mechanism of Transformers enables simplified interaction between the image and text features which removes the requirement for crossattention mechanism in UNet based Diffusion models.
translated by 谷歌翻译
视觉变压器(VIV)被涌现为图像识别的最先进的架构。虽然最近的研究表明,VITS比卷积对应物更强大,但我们的实验发现,VITS过度依赖于局部特征(例如,滋扰和质地),并且不能充分使用全局背景(例如,形状和结构)。因此,VIT不能概括到分销,现实世界数据。为了解决这一缺陷,我们通过添加由矢量量化编码器产生的离散令牌来向Vit的输入层提出简单有效的架构修改。与标准的连续像素令牌不同,离散令牌在小扰动下不变,并且单独包含较少的信息,这促进了VITS学习不变的全局信息。实验结果表明,在七种想象中的鲁棒性基准中增加了四个架构变体上的离散表示,在七个想象中心坚固的基准中加强了高达12%的鲁棒性,同时保持了在想象成上的性能。
translated by 谷歌翻译
我们研究了一种基于对抗性训练(AT)的学习基于能量的模型(EBM)的新方法。我们表明(二进制)学习一种特殊的能量功能,可以模拟数据分布的支持,并且学习过程与基于MCMC的EBM的最大似然学习密切相关。我们进一步提出了改进的与AT生成建模的技术,并证明这种新方法能够产生多样化和现实的图像。除了具有竞争性的图像生成性能到明确的EBM外,研究的方法还可以稳定训练,非常适合图像翻译任务,并且表现出强大的分布外对抗性鲁棒性。我们的结果证明了AT生成建模方法的生存能力,表明AT是学习EBM的竞争性替代方法。
translated by 谷歌翻译
变压器在计算机视觉中变得普遍,特别是对于高级视觉任务。然而,采用生成的对抗性网络(GaN)框架中的变压器仍然是一个开放但具有挑战性的问题。本文进行了一项全面的实证研究,探讨了高保真图像合成的GaN中变压器的性能。我们的分析亮点并重申了特征局部度在图像生成中的重要性,尽管局部性的优点在分类任务中是众所周知的。也许更有趣的是,我们发现自我关注层中的残余连接有害,以利用基于变压器的鉴别器和条件发电机。我们仔细检查了影响力,并提出了减轻负面影响的有效方法。我们的研究导致GaN中的变压器的新替代设计,卷积神经网络(CNN) - 免费发电机称为晶体 - G,这在无条件和条件图像代中实现了竞争导致。基于变压器的鉴别器,Strans-D也显着降低了其基于CNN的鉴别器的间隙。
translated by 谷歌翻译
基于能量的模型(EBMS)最近成功地代表了少量图像的复杂分布。然而,对它们的抽样需要昂贵的马尔可夫链蒙特卡罗(MCMC)迭代在高维像素空间中缓慢混合。与EBMS不同,变形AutoEncoders(VAES)快速生成样本,并配备潜在的空间,使得数据歧管的快速遍历。然而,VAE倾向于将高概率密度分配到实际数据分布之外的数据空间中的区域,并且经常在产生清晰图像时失败。在本文中,我们提出了VAE的一个共生组成和ebm的vaebm,提供了两个世界的eBM。 VAEBM使用最先进的VAE捕获数据分布的整体模式结构,它依赖于其EBM组件,以明确地从模型中排除非数据样区域并优化图像样本。此外,VAEBM中的VAE组件允许我们通过在VAE的潜空间中重新处理它们来加速MCMC更新。我们的实验结果表明,VAEBM在几个基准图像数据集上以大量边距开辟了最先进的VAES和EBMS。它可以产生高于256 $ \倍的高质量图像,使用短MCMC链。我们还证明了VAEBM提供了完整的模式覆盖范围,并在分配外检测中表现良好。源代码可在https://github.com/nvlabs/vaebm上获得
translated by 谷歌翻译
通过将图像形成过程分解成逐个申请的去噪自身额,扩散模型(DMS)实现了最先进的合成导致图像数据和超越。另外,它们的配方允许引导机构来控制图像生成过程而不会再刷新。然而,由于这些模型通常在像素空间中直接操作,因此强大的DMS的优化通常消耗数百个GPU天,并且由于顺序评估,推理是昂贵的。为了在保留其质量和灵活性的同时启用有限计算资源的DM培训,我们将它们应用于强大的佩带自动化器的潜在空间。与以前的工作相比,这种代表上的培训扩散模型允许第一次达到复杂性降低和细节保存之间的近乎最佳点,极大地提高了视觉保真度。通过将跨关注层引入模型架构中,我们将扩散模型转化为强大而柔性的发电机,以进行诸如文本或边界盒和高分辨率合成的通用调节输入,以卷积方式变得可以实现。我们的潜在扩散模型(LDMS)实现了一种新的技术状态,可在各种任务中进行图像修复和高竞争性能,包括无条件图像生成,语义场景合成和超级分辨率,同时与基于像素的DMS相比显着降低计算要求。代码可在https://github.com/compvis/lattent-diffusion获得。
translated by 谷歌翻译
We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates on latent patches. We analyze the scalability of our Diffusion Transformers (DiTs) through the lens of forward pass complexity as measured by Gflops. We find that DiTs with higher Gflops -- through increased transformer depth/width or increased number of input tokens -- consistently have lower FID. In addition to possessing good scalability properties, our largest DiT-XL/2 models outperform all prior diffusion models on the class-conditional ImageNet 512x512 and 256x256 benchmarks, achieving a state-of-the-art FID of 2.27 on the latter.
translated by 谷歌翻译
Denoising diffusion probabilistic models (DDPM) are a class of generative models which have recently been shown to produce excellent samples. We show that with a few simple modifications, DDPMs can also achieve competitive loglikelihoods while maintaining high sample quality. Additionally, we find that learning variances of the reverse diffusion process allows sampling with an order of magnitude fewer forward passes with a negligible difference in sample quality, which is important for the practical deployment of these models. We additionally use precision and recall to compare how well DDPMs and GANs cover the target distribution. Finally, we show that the sample quality and likelihood of these models scale smoothly with model capacity and training compute, making them easily scalable. We release our code at https://github.com/ openai/improved-diffusion.
translated by 谷歌翻译
基于注意的模型,由变压器举例说明,可以有效地模拟长距离依赖性,而是遭受自我注意操作的二次复杂性,使得基于生成的对抗网络(GAN)的高分辨率图像生成使得它们难以采用。在本文中,我们向变压器推出了两个关键成分来解决这一挑战。首先,在生成过程的低分辨率阶段,用所提出的多轴阻塞自我关注取代了标准的全球自我关注,这允许有效地混合本地和全球关注。其次,在高分辨率阶段,我们降低了自我关注,同时只保持多层的感知让人想起隐含的神经功能。为了进一步提高性能,我们基于横向引入额外的自我调制组件。结果模型表示为命中,具有关于图像尺寸的几乎线性的计算复杂度,从而直接缩放到合成高清晰度图像。我们在实验中展示了所提出的命中,实现最先进的FID得分31.87和2.95在无条件的ImageNet上,分别具有合理的吞吐量的128美元和256美元\ times 256美元。我们认为,拟议的命中是全球发电机的一个重要里程碑,完全没有卷积。
translated by 谷歌翻译
While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train. 1
translated by 谷歌翻译
最近对变形金刚的爆炸利益提出了他们成为计算机视觉任务的强大“通用”模型的潜力,例如分类,检测和分割。虽然这些尝试主要研究歧视模型,但我们探索变压器,更加臭名昭着的难以愿景任务,例如生成的对抗网络(GANS)。我们的目标是通过仅使用纯的变压器的架构,开展一项完全没有卷曲的GAN的试点研究。我们的Vanilla GaN架构被称为Cransgan,包括一个基于内存友好的变换器的发电机,逐渐增加了特征分辨率,并且相应地是多尺度鉴别器来捕获同时语义上下文和低级纹理。在他们之上,我们介绍了新的网格自我关注模块,以便进一步缓解记忆瓶颈,以便扩展到高分辨率的发电。我们还开发了一个独特的培训配方,包括一系列技术,可以减轻转发的培训不稳定问题,例如数据增强,修改的归一化和相对位置编码。与使用卷积骨架的当前最先进的GAN相比,我们最好的建筑达到了竞争力的表现。具体而言,转发在STL-10上设置10.43和18.28的最新的最新成立得分为18.28,表现优于样式。当涉及更高分辨率(例如256 x 256)的生成任务时,例如Celeba-HQ和Lsun-Church,Rancorgan继续生产具有高保真度和令人印象深刻的纹理细节的不同视觉示例。此外,我们通过可视化培训动力学,深入了解基于变压器的生成模型,了解他们的行为如何与卷积的行为。代码可在https://github.com/vita-group/transgan中获得。
translated by 谷歌翻译
We show that diffusion models can achieve image sample quality superior to the current state-of-the-art generative models. We achieve this on unconditional image synthesis by finding a better architecture through a series of ablations. For conditional image synthesis, we further improve sample quality with classifier guidance: a simple, compute-efficient method for trading off diversity for fidelity using gradients from a classifier. We achieve an FID of 2.97 on ImageNet 128×128, 4.59 on ImageNet 256×256, and 7.72 on ImageNet 512×512, and we match BigGAN-deep even with as few as 25 forward passes per sample, all while maintaining better coverage of the distribution. Finally, we find that classifier guidance combines well with upsampling diffusion models, further improving FID to 3.94 on ImageNet 256×256 and 3.85 on ImageNet 512×512. We release our code at https://github.com/openai/guided-diffusion.
translated by 谷歌翻译
Designed to learn long-range interactions on sequential data, transformers continue to show state-of-the-art results on a wide variety of tasks. In contrast to CNNs, they contain no inductive bias that prioritizes local interactions. This makes them expressive, but also computationally infeasible for long sequences, such as high-resolution images. We demonstrate how combining the effectiveness of the inductive bias of CNNs with the expressivity of transformers enables them to model and thereby synthesize high-resolution images. We show how to (i) use CNNs to learn a contextrich vocabulary of image constituents, and in turn (ii) utilize transformers to efficiently model their composition within high-resolution images. Our approach is readily applied to conditional synthesis tasks, where both non-spatial information, such as object classes, and spatial information, such as segmentations, can control the generated image. In particular, we present the first results on semanticallyguided synthesis of megapixel images with transformers and obtain the state of the art among autoregressive models on class-conditional ImageNet. Code and pretrained models can be found at https://git.io/JnyvK.
translated by 谷歌翻译
基于卷积神经网络(CNN)框架对图像支出进行了很好的研究,最近引起了计算机视觉的更多关注。但是,CNN依靠固有的电感偏见来实现有效的样品学习,这可能会降低性能上限。在本文中,以最小的变压器体系结构中的柔性自我发挥机制的启发,我们将广义图像支出问题重新构架为贴片的序列到序列自动估计问题,从而使基于查询的图像映射出现。具体而言,我们提出了一个新型混合视觉转换器基于编码器框架,名为\ textbf {query} \ textbf {o} utpainting \ textbf {trextbf {tr} ansformer(\ textbf {queryotr})围绕给定的图像。 Patch Mode的全球建模能力使我们可以从注意机制的查询角度推断图像。新颖的查询扩展模块(QEM)旨在根据编码器的输出从预测查询中整合信息,因此即使使用相对较小的数据集,也可以加速纯变压器的收敛性。为了进一步提高每个贴片之间的连接性,提议的贴片平滑模块(PSM)重新分配并平均重叠区域,从而提供无缝的预测图像。我们在实验上表明,QueryOtr可以针对最新的图像支出方法平稳和现实地产生吸引力的结果。
translated by 谷歌翻译
扩散概率模型已被证明在几个竞争性图像综合基准上产生最先进的结果,但缺乏低维,可解释的潜在空间,并且在一代中慢慢。另一方面,变形AutoEncoders(VAES)通常可以访问低维潜空间,但表现出差的样品质量。尽管最近的进步,VAE通常需要潜在代码的高维层次结构来产生高质量样本。我们呈现DiffUsevae,一种新的生成框架,它在扩散模型框架内集成了VAE,并利用这一点以设计用于扩散模型的新型条件参数化。我们表明所得模型可以在采样效率方面提高无条件扩散模型,同时还配备了具有低维VAE的扩散模型推断潜码。此外,我们表明所提出的模型可以产生高分辨率样本,并展示与标准基准上的最先进模型相当的合成质量。最后,我们表明所提出的方法可用于可控制的图像合成,并且还展示了图像超分辨率和去噪等下游任务的开箱即用功能。为了重现性,我们的源代码将公开可用于\ url {https://github.com/kpandey008/diffusevae}。
translated by 谷歌翻译
分层结构在最近的视觉变压器中很受欢迎,但是,它们需要复杂的设计和大规模的数据集。在本文中,我们探讨了在非重叠图像块上嵌套基本本地变压器的想法,并以分层方式聚合它们。我们发现块聚合函数在启用跨块非本地信息通信方面发挥着关键作用。此观察导致我们设计简化的架构,该架构需要在原始视觉变压器上更改次要代码。拟议的明智选择的设计的好处是三倍:(1)巢汇聚速度更快,需要更少的培训数据,以实现对图中的良好的概率和小型数据集如CiFAR; (2)在将关键思想扩展到图像生成时,巢导致强大的解码器,这是8美元\时代比以前的基于变压器的发电机更快; (3)我们展示通过我们设计中的这种嵌套层次结构解耦了特征学习和抽象过程,使得能够构建一种新的方法(命名的Gradcat),用于视觉解释学习模型。源代码可用https://github.com/google-research/nested-transformer。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译