识别对象和场景是两个具有挑战性的,但在图像理解中是必不可少的任务。特别是,使用RGB-D传感器在处理这些任务中,已成为更好的视觉理解的重要焦点领域。同时,深度神经网络,特别是卷积神经网络(CNNS),已经普遍存在,通过替换具有有效深度特征的手工制作的特征来应用于许多视觉任务。但是,它是一个公开问题如何有效地利用多层CNN模型的深度特征。在本文中,我们提出了一种新的两阶段框架,从多模态RGB-D图像中提取用于对象和场景识别任务的判别特征表示。在第一阶段,预先训练的CNN模型已被用作骨干,以在多个级别提取视觉特征。第二阶段将这些特征映射到高电平表示,具有有效的递归神经网络(RNNS)的完全随机结构。为了应对CNN激活的高维度,通过在RNNS中扩展随机性的想法来提出一种随机加权池方案。通过基于RGB和深度流分别的单个识别信徒(即SVM分数)来计算权重来执行多模态融合。这在最终的RGB-D分类性能中产生了一致的类标签估计。广泛的实验验证了RNN阶段的完全随机结构编码CNN激活以成功辨别鉴别的固体功能。比较实验结果对华盛顿RGB-D对象和Sun RGB-D场景数据集的比较实验结果表明,与物体和场景识别任务中的最先进的方法相比,该方法达到了优越的或映射性能。代码可在https://github.com/acaglayan/cnn_randrnn获得。
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
人类行动识别是计算机视觉中的重要应用领域。它的主要目的是准确地描述人类的行为及其相互作用,从传感器获得的先前看不见的数据序列中。识别,理解和预测复杂人类行动的能力能够构建许多重要的应用,例如智能监视系统,人力计算机界面,医疗保健,安全和军事应用。近年来,计算机视觉社区特别关注深度学习。本文使用深度学习技术的视频分析概述了当前的动作识别最新识别。我们提出了识别人类行为的最重要的深度学习模型,并分析它们,以提供用于解决人类行动识别问题的深度学习算法的当前进展,以突出其优势和缺点。基于文献中报道的识别精度的定量分析,我们的研究确定了动作识别中最新的深层体系结构,然后为该领域的未来工作提供当前的趋势和开放问题。
translated by 谷歌翻译
近年来,已经产生了大量的视觉内容,并从许多领域共享,例如社交媒体平台,医学成像和机器人。这种丰富的内容创建和共享引入了新的挑战,特别是在寻找类似内容内容的图像检索(CBIR)-A的数据库中,即长期建立的研究区域,其中需要改进的效率和准确性来实时检索。人工智能在CBIR中取得了进展,并大大促进了实例搜索过程。在本调查中,我们审查了最近基于深度学习算法和技术开发的实例检索工作,通过深网络架构类型,深度功能,功能嵌入方法以及网络微调策略组织了调查。我们的调查考虑了各种各样的最新方法,在那里,我们识别里程碑工作,揭示各种方法之间的联系,并呈现常用的基准,评估结果,共同挑战,并提出未来的未来方向。
translated by 谷歌翻译
We evaluate whether features extracted from the activation of a deep convolutional network trained in a fully supervised fashion on a large, fixed set of object recognition tasks can be repurposed to novel generic tasks. Our generic tasks may differ significantly from the originally trained tasks and there may be insufficient labeled or unlabeled data to conventionally train or adapt a deep architecture to the new tasks. We investigate and visualize the semantic clustering of deep convolutional features with respect to a variety of such tasks, including scene recognition, domain adaptation, and fine-grained recognition challenges. We compare the efficacy of relying on various network levels to define a fixed feature, and report novel results that significantly outperform the state-of-the-art on several important vision challenges. We are releasing DeCAF, an open-source implementation of these deep convolutional activation features, along with all associated network parameters to enable vision researchers to be able to conduct experimentation with deep representations across a range of visual concept learning paradigms.
translated by 谷歌翻译
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
translated by 谷歌翻译
编码器 - 解码器模型已广泛用于RGBD语义分割,并且大多数通过双流网络设计。通常,共同推理RGBD的颜色和几何信息是有益的对语义分割。然而,大多数现有方法都无法全面地利用编码器和解码器中的多模式信息。在本文中,我们提出了一种用于RGBD语义细分的新型关注的双重监督解码器。在编码器中,我们设计一个简单但有效的关注的多模式融合模块,以提取和保险丝深度多级成对的互补信息。要了解更强大的深度表示和丰富的多模态信息,我们介绍了一个双分支解码器,以有效利用不同任务的相关性和互补线。在Nyudv2和Sun-RGBD数据集上的广泛实验表明,我们的方法达到了最先进的方法的卓越性能。
translated by 谷歌翻译
给定空中图像,空中场景解析(ASP)目标,以解释图像内容的语义结构,例如,通过将语义标签分配给图像的每个像素来解释图像内容的语义结构。随着数据驱动方法的推广,过去几十年通过在使用高分辨率航空图像时,通过接近基于瓦片级场景分类或分段的图像分析的方案来解决了对ASP的有希望的进展。然而,前者的方案通常会产生瓷砖技术边界的结果,而后者需要处理从像素到语义的复杂建模过程,这通常需要具有像素 - 明智语义标签的大规模和良好的图像样本。在本文中,我们在ASP中解决了这些问题,从瓷砖级场景分类到像素明智语义标签的透视图。具体而言,我们首先通过文献综述重新审视空中图像解释。然后,我们提出了一个大规模的场景分类数据集,其中包含一百万个空中图像被称为百万援助。使用所提出的数据集,我们还通过经典卷积神经网络(CNN)报告基准测试实验。最后,我们通过统一瓦片级场景分类和基于对象的图像分析来实现ASP,以实现像素明智的语义标记。密集实验表明,百万援助是一个具有挑战性但有用的数据集,可以作为评估新开发的算法的基准。当从百万辅助救援方面传输知识时,百万辅助的微调CNN模型始终如一,而不是那些用于空中场景分类的预磨料想象。此外,我们设计的分层多任务学习方法实现了对挑战GID的最先进的像素 - 明智的分类,拓宽了用于航空图像解释的像素明智语义标记的瓦片级场景分类。
translated by 谷歌翻译
手写数字识别(HDR)是光学特征识别(OCR)领域中最具挑战性的任务之一。不管语言如何,HDR都存在一些固有的挑战,这主要是由于个人跨个人的写作风格的变化,编写媒介和环境的变化,无法在反复编写任何数字等时保持相同的笔触。除此之外,特定语言数字的结构复杂性可能会导致HDR的模棱两可。多年来,研究人员开发了许多离线和在线HDR管道,其中不同的图像处理技术与传统的机器学习(ML)基于基于的和/或基于深度学习(DL)的体系结构相结合。尽管文献中存在有关HDR的广泛审查研究的证据,例如:英语,阿拉伯语,印度,法尔西,中文等,但几乎没有对孟加拉人HDR(BHDR)的调查,这缺乏对孟加拉语HDR(BHDR)的研究,而这些调查缺乏对孟加拉语HDR(BHDR)的研究。挑战,基础识别过程以及可能的未来方向。在本文中,已经分析了孟加拉语手写数字的特征和固有的歧义,以及二十年来最先进的数据集的全面见解和离线BHDR的方法。此外,还详细讨论了一些涉及BHDR的现实应用特定研究。本文还将作为对离线BHDR背后科学感兴趣的研究人员的汇编,煽动了对相关研究的新途径的探索,这可能会进一步导致在不同应用领域对孟加拉语手写数字进行更好的离线认识。
translated by 谷歌翻译
人类的物体感知能力令人印象深刻,当试图开发具有类似机器人的解决方案时,这变得更加明显。从人类如何将视觉和触觉用于对象感知和相关任务的灵感中,本文总结了机器人应用的多模式对象感知的当前状态。它涵盖了生物学灵感,传感器技术,数据集以及用于对象识别和掌握的感觉数据处理的各个方面。首先,概述了多模式对象感知的生物学基础。然后讨论了传感技术和数据收集策略。接下来,介绍了主要计算方面的介绍,突出显示了每个主要应用领域的一些代表性文章,包括对象识别,传输学习以及对象操纵和掌握。最后,在每个领域的当前进步中,本文概述了有希望的新研究指示。
translated by 谷歌翻译
RGB和深度图像上的突出物体检测(SOD)引起了越来越多的研究兴趣,因为它的有效性和现在可以方便地捕获深度线索的事实。现有的RGB-D SOD模型通常采用不同的融合策略来学习来自两个模态(\即RGB和深度)的共享表示,而几个方法明确考虑如何保留特定模态特征。在这项研究中,我们提出了一种新的框架,被称为SPNET}(特异性保存网络),这通过探索共享信息和模态特定属性(例如,特异性)来利益SOD性能。具体地,我们建议采用两个模态特定的网络和共享学习网络来分别生成个体和共享显着性预测映射。为了有效地融合共享学习网络中的跨模型特征,我们提出了一个交叉增强的集成模块(CIM),然后将融合特征传播到下一个层以集成交叉级信息。此外,为了捕获丰富的互补多模态信息,用于提高SOD性能,我们提出了一个多模态特征聚合(MFA)模块,将每个单独解码器的模态特定功能集成到共享解码器中。通过使用跳过连接,可以完全组合编码器和解码器层之间的分层功能。广泛的实验表明我们的〜\我们的〜优于六种流行的RGB-D SOD和三个伪装对象检测基准测试的前沿方法。该项目可在公开提供:https://github.com/taozh2017/spnet。
translated by 谷歌翻译
为了充分利用潜在的分钟和微妙的差异,细粒度分类器收集有关阶级变异的信息。由于同一类实体中的颜色,观点和结构之间的差异,任务是非常具有挑战性的。由于与自己的其他类别和差异的观点之间的差异之间的相似性,分类变得更加困难。在这项工作中,我们调查了地标通用CNN分类器的性能,它在细粒度数据集上呈现了大规模分类数据集的顶部缺口结果,并将其与最先进的细粒度分类器进行比较。在本文中,我们提出了两个特定问题:(i)一般的CNN分类器是否可以实现与细粒度的分类器相当的结果? (ii)将军CNN分类器是否需要任何特定信息来改善细粒度的信息?在整个工作中,我们培训一般的CNN分类器而不引入特定于细粒度数据集的任何方面。我们对六个数据集进行了广泛的评估,以确定细粒度分类器是否能够在实验中提升基线。
translated by 谷歌翻译
场景分类已确定为一个具有挑战性的研究问题。与单个对象的图像相比,场景图像在语义上可能更为复杂和抽象。它们的差异主要在于识别的粒度水平。然而,图像识别是场景识别良好表现的关键支柱,因为从对象图像中获得的知识可用于准确识别场景。现有场景识别方法仅考虑场景的类别标签。但是,我们发现包含详细的本地描述的上下文信息也有助于允许场景识别模型更具歧视性。在本文中,我们旨在使用对象中编码的属性和类别标签信息来改善场景识别。基于属性和类别标签的互补性,我们提出了一个多任务属性识别识别(MASR)网络,该网络学习一个类别嵌入式,同时预测场景属性。属性采集和对象注释是乏味且耗时的任务。我们通过提出部分监督的注释策略来解决该问题,其中人类干预大大减少。该策略为现实世界情景提供了更具成本效益的解决方案,并且需要减少注释工作。此外,考虑到对象检测到的分数所指示的重要性水平,我们重新进行了权威预测。使用提出的方法,我们有效地注释了四个大型数据集的属性标签,并系统地研究场景和属性识别如何相互受益。实验结果表明,与最先进的方法相比
translated by 谷歌翻译
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks e.g., Long short-term memory (LSTM). Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization) and 3D analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges towards the application of transformer models in computer vision.
translated by 谷歌翻译
哥内克人Sentinel Imagery的纯粹卷的可用性为使用深度学习的大尺度创造了新的土地利用陆地覆盖(Lulc)映射的机会。虽然在这种大型数据集上培训是一个非琐碎的任务。在这项工作中,我们试验Lulc Image分类和基准不同最先进模型的Bigearthnet数据集,包括卷积神经网络,多层感知,视觉变压器,高效导通和宽残余网络(WRN)架构。我们的目标是利用分类准确性,培训时间和推理率。我们提出了一种基于用于网络深度,宽度和输入数据分辨率的WRNS复合缩放的高效导通的框架,以有效地训练和测试不同的模型设置。我们设计一种新颖的缩放WRN架构,增强了有效的通道注意力机制。我们提出的轻量级模型具有较小的培训参数,实现所有19个LULC类的平均F分类准确度达到4.5%,并且验证了我们使用的resnet50最先进的模型速度快两倍作为基线。我们提供超过50种培训的型号,以及我们在多个GPU节点上分布式培训的代码。
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
细粒度的图像分析(FGIA)是计算机视觉和模式识别中的长期和基本问题,并为一组多种现实世界应用提供了基础。 FGIA的任务是从属类别分析视觉物体,例如汽车或汽车型号的种类。细粒度分析中固有的小阶级和阶级阶级内变异使其成为一个具有挑战性的问题。利用深度学习的进步,近年来,我们在深入学习动力的FGIA中见证了显着进展。在本文中,我们对这些进展的系统进行了系统的调查,我们试图通过巩固两个基本的细粒度研究领域 - 细粒度的图像识别和细粒度的图像检索来重新定义和扩大FGIA领域。此外,我们还审查了FGIA的其他关键问题,例如公开可用的基准数据集和相关域的特定于应用程序。我们通过突出几个研究方向和开放问题,从社区中突出了几个研究方向和开放问题。
translated by 谷歌翻译
深度学习属于人工智能领域,机器执行通常需要某种人类智能的任务。类似于大脑的基本结构,深度学习算法包括一种人工神经网络,其类似于生物脑结构。利用他们的感官模仿人类的学习过程,深入学习网络被送入(感官)数据,如文本,图像,视频或声音。这些网络在不同的任务中优于最先进的方法,因此,整个领域在过去几年中看到了指数增长。这种增长在过去几年中每年超过10,000多种出版物。例如,只有在医疗领域中的所有出版物中覆盖的搜索引擎只能在Q3 2020中覆盖所有出版物的子集,用于搜索术语“深度学习”,其中大约90%来自过去三年。因此,对深度学习领域的完全概述已经不可能在不久的将来获得,并且在不久的将来可能会难以获得难以获得子场的概要。但是,有几个关于深度学习的综述文章,这些文章专注于特定的科学领域或应用程序,例如计算机愿景的深度学习进步或在物体检测等特定任务中进行。随着这些调查作为基础,这一贡献的目的是提供对不同科学学科的深度学习的第一个高级,分类的元调查。根据底层数据来源(图像,语言,医疗,混合)选择了类别(计算机愿景,语言处理,医疗信息和其他工程)。此外,我们还审查了每个子类别的常见架构,方法,专业,利弊,评估,挑战和未来方向。
translated by 谷歌翻译
语义分割是图像的像素明智标记。由于在像素级别定义了问题,因此确定图像类标签是不可接受的,而是在原始图像像素分辨率下本地化它们是必要的。通过卷积神经网络(CNN)在创建语义,高级和分层图像特征方面的非凡能力推动;在过去十年中提出了几种基于深入的学习的2D语义分割方法。在本调查中,我们主要关注最近的语义细分科学发展,特别是在使用2D图像的基于深度学习的方法。我们开始分析了对2D语义分割的公共图像集和排行榜,概述了性能评估中使用的技术。在研究现场的演变时,我们按时间顺序分类为三个主要时期,即预先和早期的深度学习时代,完全卷积的时代和后FCN时代。我们在技术上分析了解决领域的基本问题的解决方案,例如细粒度的本地化和规模不变性。在借阅我们的结论之前,我们提出了一张来自所有提到的时代的方法表,每个方法都概述了他们对该领域的贡献。我们通过讨论现场当前的挑战以及他们已经解决的程度来结束调查。
translated by 谷歌翻译
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-ofthe-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.
translated by 谷歌翻译