点云的3D场景流量估计是计算机视觉中的低级3D运动感知任务。流嵌入是场景流估计中的一种常用技术,它编码两个连续帧之间的点运动。因此,对于流动嵌入捕获运动的正确总体方向是至关重要的。但是,以前的作品仅在本地搜索以确定软信号,而忽略了遥远的点,而遥远的点是实际匹配的点。另外,估计的对应关系通常来自相邻点云的正向,并且可能与从向后方向获得的估计对应关系不一致。为了解决这些问题,我们提出了一个新颖的全能嵌入层,并在初始场景流量估计期间具有向后的可靠性验证。此外,我们研究并比较了3D场景流网络的关键组件中的几个设计选择,包括点相似度计算,预测变量的输入元素以及预测变量和改进级别的设计。仔细选择了最有效的设计后,我们能够提出一个模型,该模型可以在FlyingThings3D和Kitti场景流数据集上实现最新性能。我们提出的模型超过了所有现有方法的FlyterThings3D数据集至少38.2%,而EPE3D Metric的Kitti场景流数据集则超过了24.7%。我们在https://github.com/irmvlab/3dflow上发布代码。
translated by 谷歌翻译
场景流表示场景中每个点的3D运动,该动作明确描述了每个点运动的距离和方向。场景流估计用于各种应用,例如自主驾驶场,活动识别和虚拟现实字段。由于对现实世界数据的地面真理的注释场景流动是一项挑战,因此没有可用的现实数据集可提供大量数据,并具有地面真相以进行场景流量估计。因此,许多作品使用合成的数据将其网络和现实世界中的LIDAR数据预先培训。与以前的无监督学习场景流程中的云中的学习流程不同,我们建议使用探空仪信息来帮助无监督的场景流程学习,并使用现实世界中的激光雷达数据来训练我们的网络。有监督的探测器为场景流提供了更准确的共享成本量。此外,拟议的网络具有掩模加权的经线层,以获得更准确的预测点云。经线操作意味着将估计的姿势转换或场景流到源点云中以获得预测的点云,这是精炼场景从粗糙到细小的关键。执行翘曲操作时,不同状态中的点使用不同的权重进行姿势转换和场景流动转换。我们将点状态分类为静态,动态和遮挡,其中静态掩模用于划分静态和动态点,并使用遮挡掩码来划分闭塞点。掩模加权经线表明在执行经线操作时,将静态面膜和遮挡面膜用作权重。我们的设计被证明在消融实验中有效。实验结果表明,在现实世界中,3D场景流的无监督学习方法的前景是有希望的。
translated by 谷歌翻译
本文首先提出了一个有效的3D点云学习架构,名为PWCLO-NET的LIDAR ODOMORY。在该架构中,提出了3D点云的投影感知表示来将原始的3D点云组织成有序数据表单以实现效率。 LIDAR ODOMOMERY任务的金字塔,翘曲和成本量(PWC)结构是为估计和优化在分层和高效的粗良好方法中的姿势。建立一个投影感知的细心成本卷,以直接关联两个离散点云并获得嵌入运动模式。然后,提出了一种可训练的嵌入掩模来称量局部运动模式以回归整体姿势和过滤异常值点。可训练的姿势经线细化模块迭代地与嵌入式掩码进行分层优化,使姿势估计对异常值更加强大。整个架构是全能优化的端到端,实现成本和掩码的自适应学习,并且涉及点云采样和分组的所有操作都是通过投影感知的3D特征学习方法加速。在Kitti Ocomatry DataSet上证明了我们的激光乐队内径架构的卓越性能和有效性。我们的方法优于基于学习的所有基于学习的方法,甚至基于几何的方法,在大多数基于Kitti Odomatry数据集的序列上具有映射优化的遗传。
translated by 谷歌翻译
场景流估计在场景之间提取点运动的场景估计正在成为许多计算机视觉任务的关键任务。但是,所有现有的估计方法仅利用单向特征,从而限制了准确性和通用性。本文使用双向流嵌入层提出了一种新颖的场景估计架构。所提出的双向层学习沿向前和向后方向的功能,从而增强了估计性能。此外,层次功能提取和翘曲可改善性能并减少计算开销。实验结果表明,拟议的架构通过在FlyingThings3D和Kitti基准测试中优于其他方法,从而实现了新的最新记录。代码可在https://github.com/cwc1260/biflow上找到。
translated by 谷歌翻译
场景流程描绘了3D场景的动态,这对于传统上,从诸如自主驾驶,机器人导航,AR / VR等的各种应用来说至关重要。从密集/常规RGB视频帧估计场景流。随着深度感测技术的发展,通过点云可获得精确的3D测量,这在3D场景流中引发了新的研究。然而,由于典型点云采样模式中的稀缺性和不规则性,从点云中提取场景流量仍然具有挑战性。与不规则采样相关的一个主要问题被识别为点设置抽象/特征提取期间的随机性 - 许多流程估计场景中的基本进程。因此,提出了一种注意力(SA ^ 2)层的新型空间抽象,以减轻不稳定的抽象问题。此外,提出了一种注意力(TA ^ 2)层的时间抽象来纠正时间域中的注意力,导致运动中的运动缩放在更大范围内。广泛的分析和实验验证了我们方法的动机和显着性能收益,与空间 - 时间注意(Festa)称为流量估计,与场景流估计的几个最先进的基准相比。
translated by 谷歌翻译
了解3D场景是自治代理的关键先决条件。最近,LIDAR和其他传感器已经以点云帧的时间序列形式提供了大量数据。在这项工作中,我们提出了一种新的问题 - 顺序场景流量估计(SSFE) - 该旨在预测给定序列中所有点云的3D场景流。这与先前研究的场景流程估计问题不同,这侧重于两个框架。我们介绍SPCM-NET架构,通过计算相邻点云之间的多尺度时空相关性,然后通过订单不变的复制单元计算多级时空相关性来解决这个问题。我们的实验评估证实,与仅使用两个框架相比,点云序列的复发处理导致SSFE明显更好。另外,我们证明可以有效地修改该方法,用于顺序点云预测(SPF),一种需要预测未来点云帧的相关问题。我们的实验结果是使用SSFE和SPF的新基准进行评估,包括合成和实时数据集。以前,场景流估计的数据集仅限于两个帧。我们为这些数据集提供非琐碎的扩展,用于多帧估计和预测。由于难以获得现实世界数据集的地面真理运动,我们使用自我监督的培训和评估指标。我们认为,该基准将在该领域的未来研究中关键。将可访问基准和型号的所有代码。
translated by 谷歌翻译
3D场景流动表征了当前时间的点如何流到3D欧几里得空间中的下一次,该空间具有自主推断场景中所有对象的非刚性运动的能力。从图像估算场景流的先前方法具有局限性,该方法通过分别估计光流和差异来划分3D场景流的整体性质。学习3D场景从点云流动也面临着综合数据和真实数据与LIDAR点云的稀疏性之间差距的困难。在本文中,利用生成的密集深度图来获得显式的3D坐标,该坐标可直接从2D图像中学习3D场景流。通过将2D像素的密度性质引入3D空间,可以改善预测场景流的稳定性。通过统计方法消除了生成的3D点云中的离群值,以削弱噪声点对3D场景流估计任务的影响。提出了差异一致性损失,以实现3D场景流的更有效的无监督学习。比较了现实世界图像上3D场景流的自我监督学习方法与在综合数据集中学习的多种方法和在LIDAR点云上学习的方法。显示多个场景流量指标的比较可以证明引入伪LIDAR点云到场景流量估计的有效性和优势。
translated by 谷歌翻译
在本文中,我们研究了从同步2D和3D数据共同估计光流量和场景流的问题。以前的方法使用复杂的管道,将联合任务分成独立阶段,或以“早期融合”或“迟到的”方式“的熔断器2D和3D信息。这种单尺寸适合的方法遭受了未能充分利用每个模态的特征的困境,或者最大化模态互补性。为了解决这个问题,我们提出了一个新的端到端框架,称为Camliflow。它由2D和3D分支组成,在特定层之间具有多个双向连接。与以前的工作不同,我们应用基于点的3D分支以更好地提取几何特征,并设计一个对称的学习操作员以保险熔断致密图像特征和稀疏点特征。我们还提出了一种转换,以解决3D-2D投影的非线性问题。实验表明,Camliflow以更少的参数实现了更好的性能。我们的方法在Kitti场景流基准上排名第一,表现出以1/7参数的前一篇文章。代码将可用。
translated by 谷歌翻译
在现有方法中,LIDAR的探测器显示出卓越的性能,但视觉探测器仍被广泛用于其价格优势。从惯例上讲,视觉检验的任务主要依赖于连续图像的输入。但是,探测器网络学习图像提供的异性几何信息非常复杂。在本文中,将伪LIDAR的概念引入了探测器中以解决此问题。伪LIDAR点云背面项目由图像生成的深度图中的3D点云,这改变了图像表示的方式。与立体声图像相比,立体声匹配网络生成的伪lidar点云可以得到显式的3D坐标。由于在3D空间中发生了6个自由度(DOF)姿势转换,因此伪宽点云提供的3D结构信息比图像更直接。与稀疏的激光雷达相比,伪驱动器具有较密集的点云。为了充分利用伪LIDAR提供的丰富点云信息,采用了投射感知的探测管道。以前的大多数基于激光雷达的算法从点云中采样了8192点,作为探视网络的输入。投影感知的密集探测管道采用从图像产生的所有伪lidar点云,除了误差点作为网络的输入。在图像中充分利用3D几何信息时,图像中的语义信息也用于探视任务中。 2D-3D的融合是在仅基于图像的进程中实现的。 Kitti数据集的实验证明了我们方法的有效性。据我们所知,这是使用伪LIDAR的第一种视觉探光法。
translated by 谷歌翻译
我们介绍了PointConvormer,这是一个基于点云的深神经网络体系结构的新颖构建块。受到概括理论的启发,PointConvormer结合了点卷积的思想,其中滤波器权重仅基于相对位置,而变形金刚则利用了基于功能的注意力。在PointConvormer中,附近点之间的特征差异是重量重量卷积权重的指标。因此,我们从点卷积操作中保留了不变,而注意力被用来选择附近的相关点进行卷积。为了验证PointConvormer的有效性,我们在点云上进行了语义分割和场景流估计任务,其中包括扫描仪,Semantickitti,FlyingThings3D和Kitti。我们的结果表明,PointConvormer具有经典的卷积,常规变压器和Voxelized稀疏卷积方法的表现,具有较小,更高效的网络。可视化表明,PointConvormer的性能类似于在平面表面上的卷积,而邻域选择效果在物体边界上更强,表明它具有两全其美。
translated by 谷歌翻译
随着LIDAR传感器在自动驾驶中的流行率,3D对象跟踪受到了越来越多的关注。在点云序列中,3D对象跟踪旨在预测给定对象模板中连续帧中对象的位置和方向。在变压器成功的驱动下,我们提出了点跟踪变压器(PTTR),它有效地预测了高质量的3D跟踪,借助变压器操作,以粗到1的方式导致。 PTTR由三个新型设计组成。 1)我们设计的关系意识采样代替随机抽样,以在亚采样过程中保留与给定模板相关的点。 2)我们提出了一个点关系变压器,以进行有效的特征聚合和模板和搜索区域之间的特征匹配。 3)基于粗糙跟踪结果,我们采用了一个新颖的预测改进模块,通过局部特征池获得最终的完善预测。此外,以捕获对象运动的鸟眼视图(BEV)的有利特性(BEV)的良好属性,我们进一步设计了一个名为PTTR ++的更高级的框架,该框架既包含了点的视图和BEV表示)产生高质量跟踪结果的影响。 PTTR ++实质上提高了PTTR顶部的跟踪性能,并具有低计算开销。多个数据集的广泛实验表明,我们提出的方法达到了卓越的3D跟踪准确性和效率。
translated by 谷歌翻译
在点云序列中,3D对象跟踪目的是在给定模板点云的情况下预测当前搜索点云中的对象的位置和方向。通过变压器的成功,我们提出了点跟踪变压器(PTTR),其有效地在变压器操作的帮助下以粗良好的方式预测高质量的3D跟踪结果。 PTTR由三种新颖的设计组成。 1)除了随机抽样中,我们设计关系感知采样,以保护在子采样期间给定模板的相关点。 2)此外,我们提出了一种由自我关注和跨关注模块组成的点关系变压器(PRT)。全局自我关注操作捕获远程依赖性,以便分别增强搜索区域和模板的编码点特征。随后,我们通过横向关注匹配两组点特征来生成粗略跟踪结果。 3)基于粗略跟踪结果,我们采用了一种新颖的预测细化模块来获得最终精制预测。此外,我们根据Waymo Open DataSet创建一个大型点云单个对象跟踪基准。广泛的实验表明,PTTR以准确性和效率达到优越的点云跟踪。
translated by 谷歌翻译
场景流表示3D空间中点的运动,这是代表2D图像中像素运动的光流的对应物。但是,很难在真实场景中获得场景流的基础真理,并且最近的研究基于培训的合成数据。因此,如何基于实际数据训练场景流网络具有无监督的方法表现出至关重要的意义。本文提出了一种针对场景流的新颖无监督学习方法,该方法利用了单眼相机连续的两个帧的图像,而没有场景流的地面真相进行训练。我们的方法实现了一个目标,即训练场景流通过现实世界数据弥合了训练数据和测试数据之间的差距,并扩大了可用数据的范围以进行培训。本文无监督的场景流程学习主要由两个部分组成:(i)深度估计和摄像头姿势估计,以及(ii)基于四个不同损失功能的场景流估计。深度估计和相机姿势估计获得了两个连续帧之间的深度图和摄像头,这为下一个场景流估计提供了更多信息。之后,我们使用了深度一致性损失,动态静态一致性损失,倒角损失和拉普拉斯正规化损失来对场景流网络进行无监督的训练。据我们所知,这是第一篇意识到从单眼摄像机流动的3D场景流程的无监督学习的论文。 Kitti上的实验结果表明,与传统方法迭代最接近点(ICP)和快速全球注册(FGR)相比,我们无监督学习场景学习的方法符合表现出色。源代码可在以下网址获得:https://github.com/irmvlab/3dunmonoflow。
translated by 谷歌翻译
We introduce Recurrent All-Pairs Field Transforms (RAFT), a new deep network architecture for optical flow. RAFT extracts perpixel features, builds multi-scale 4D correlation volumes for all pairs of pixels, and iteratively updates a flow field through a recurrent unit that performs lookups on the correlation volumes. RAFT achieves stateof-the-art performance. On KITTI, RAFT achieves an F1-all error of 5.10%, a 16% error reduction from the best published result (6.10%). On Sintel (final pass), RAFT obtains an end-point-error of 2.855 pixels, a 30% error reduction from the best published result (4.098 pixels). In addition, RAFT has strong cross-dataset generalization as well as high efficiency in inference time, training speed, and parameter count. Code is available at https://github.com/princeton-vl/RAFT.
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
由于激光雷达扫描数据的大规模,噪音和数据不完整,注册Urban Point Clouds是一项艰巨的任务。在本文中,我们提出了SARNET,这是一个新型的语义增强注册网络,旨在在城市规模上实现有效的城市点云的注册。与以前仅在点级空间中构建对应关系的方法不同,我们的方法完全利用语义特征来提高注册精度。具体而言,我们提取具有高级语义分割网络的每点语义标签,并构建先前的语义零件到部分对应关系。然后,我们将语义信息纳入基于学习的注册管道中,该管道由三个核心模块组成:基于语义的最远点采样模块,以有效地滤除异常值和动态对象;一个语义增强的特征提取模块,用于学习更多的判别点描述符;语义改制的转换估计模块,该模块利用先前的语义匹配作为掩码,通过减少错误匹配以更好地收敛来完善点对应关系。我们通过使用来自城市场景的大区域的现实世界数据并将其与替代方法进行比较,从而广泛评估所提出的SARNET。该代码可在https://github.com/wintercodeforeverything/sarnet上找到。
translated by 谷歌翻译
变压器一直是自然语言处理(NLP)和计算机视觉(CV)革命的核心。 NLP和CV的显着成功启发了探索变压器在点云处理中的使用。但是,变压器如何应对点云的不规则性和无序性质?变压器对于不同的3D表示(例如,基于点或体素)的合适性如何?各种3D处理任务的变压器有多大的能力?截至目前,仍然没有对这些问题的研究进行系统的调查。我们第一次为3D点云分析提供了越来越受欢迎的变压器的全面概述。我们首先介绍变压器体系结构的理论,并在2D/3D字段中审查其应用程序。然后,我们提出三种不同的分类法(即实现 - 数据表示和基于任务),它们可以从多个角度对当前的基于变压器的方法进行分类。此外,我们介绍了研究3D中自我注意机制的变异和改进的结果。为了证明变压器在点云分析中的优势,我们提供了基于各种变压器的分类,分割和对象检测方法的全面比较。最后,我们建议三个潜在的研究方向,为3D变压器的开发提供福利参考。
translated by 谷歌翻译
最近的3D注册方法可以有效处理大规模或部分重叠的点对。然而,尽管具有实用性,但在空间尺度和密度方面与不平衡对匹配。我们提出了一种新颖的3D注册方法,称为uppnet,用于不平衡点对。我们提出了一个层次结构框架,通过逐渐减少搜索空间,可以有效地找到近距离的对应关系。我们的方法预测目标点的子区域可能与查询点重叠。以下超点匹配模块和细粒度的细化模块估计两个点云之间的准确对应关系。此外,我们应用几何约束来完善满足空间兼容性的对应关系。对应性预测是对端到端训练的,我们的方法可以通过单个前向通行率预测适当的刚体转换,并给定点云对。为了验证提出方法的疗效,我们通过增强Kitti LiDAR数据集创建Kitti-UPP数据集。该数据集的实验表明,所提出的方法显着优于最先进的成对点云注册方法,而当目标点云大约为10 $ \ times $ higation时,注册召回率的提高了78%。比查询点云大约比查询点云更密集。
translated by 谷歌翻译
场景流程使自动驾驶汽车可以推理多个独立对象的任意运动,这是长期移动自治的关键。尽管估计LiDAR的场景流动最近进展,但仍未知如何从4D雷达估算场景流动 - 这是一种越来越流行的汽车传感器,因为它在不利的天气和照明条件下的稳健性。与激光点云相比,雷达数据更为稀疏,嘈杂,分辨率更低。在现实世界中,雷达场景流的注释数据集也没有且昂贵。这些因素共同提出了雷达场景流量估计是一个具有挑战性的问题。这项工作旨在解决上述挑战,并通过利用自我监督的学习来估计场景从4-D雷达点云流动。稳健的场景估计架构和三个新颖损失的定制旨在应对棘手的雷达数据。现实世界实验结果验证了我们的方法能够稳健地估计野生中的雷达场景流,并有效地支持运动分割的下游任务。
translated by 谷歌翻译
Point Cloud升级旨在从给定的稀疏中产生密集的点云,这是一项具有挑战性的任务,这是由于点集的不规则和无序的性质。为了解决这个问题,我们提出了一种新型的基于深度学习的模型,称为PU-Flow,该模型结合了正常的流量和权重预测技术,以产生均匀分布在基础表面上的致密点。具体而言,我们利用标准化流的可逆特征来转换欧几里得和潜在空间之间的点,并将UPSMPLING过程作为潜在空间中相邻点的集合,从本地几何环境中自适应地学习。广泛的实验表明,我们的方法具有竞争力,并且在大多数测试用例中,它在重建质量,近距到表面的准确性和计算效率方面的表现优于最先进的方法。源代码将在https://github.com/unknownue/pu-flow上公开获得。
translated by 谷歌翻译