已知估计传播语音的质量是非琐碎的任务。虽然传统上,被要求对测试参与者评估样品的质量;如今,可以使用自动化方法。这些方法可分为:1)侵入式模型,其使用原件和降级信号,以及2)非侵入式模型,其仅需要降级信号。最近,基于神经网络的非侵入式模型显示出基于胜过的基于信号处理的模型。然而,基于深度学习的模型的优点具有更具挑战性的来解释的成本。为了更加了解预测模型,本文分析了非侵入式语音质量预测模型NISQA。 NISQA由卷积神经网络(CNN)和经常性神经网络(RNN)组成。 CNN的任务是计算帧级别的语音质量预测的相关特征,而RNN在各个语音帧之间模拟时间依赖性。使用不同的解释算法来了解CNN的自动学习功能。以这种方式,可以识别几种可解释的特征,例如对噪声或强烈中断的敏感性。另一方面,发现多个功能携带冗余信息。
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
卷积神经网络(CNN)以其出色的功能提取能力而闻名,可以从数据中学习模型,但被用作黑匣子。对卷积滤液和相关特征的解释可以帮助建立对CNN的理解,以区分各种类别。在这项工作中,我们关注的是CNN模型的解释性,称为CNNexplain,该模型用于COVID-19和非CoVID-19分类,重点是卷积过滤器的特征解释性,以及这些功能如何有助于分类。具体而言,我们使用了各种可解释的人工智能(XAI)方法,例如可视化,SmoothGrad,Grad-Cam和Lime来提供卷积滤液的解释及相关特征及其在分类中的作用。我们已经分析了使用干咳嗽光谱图的这些方法的解释。从石灰,光滑果实和GRAD-CAM获得的解释结果突出了不同频谱图的重要特征及其与分类的相关性。
translated by 谷歌翻译
Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to wellinformed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
随着深度神经网络的兴起,解释这些网络预测的挑战已经越来越识别。虽然存在许多用于解释深度神经网络的决策的方法,但目前没有关于如何评估它们的共识。另一方面,鲁棒性是深度学习研究的热门话题;但是,在最近,几乎没有谈论解释性。在本教程中,我们首先呈现基于梯度的可解释性方法。这些技术使用梯度信号来分配对输入特征的决定的负担。后来,我们讨论如何为其鲁棒性和对抗性的鲁棒性在具有有意义的解释中扮演的作用来评估基于梯度的方法。我们还讨论了基于梯度的方法的局限性。最后,我们提出了在选择解释性方法之前应检查的最佳实践和属性。我们结束了未来在稳健性和解释性融合的地区研究的研究。
translated by 谷歌翻译
卷积神经网络(CNN)最近由于捕获非线性系统行为并提取预测性时空模式而引起了地球科学的极大关注。然而,鉴于其黑盒的性质以及预测性的重要性,可解释的人工智能方法(XAI)已成为解释CNN决策策略的一种手段。在这里,我们建立了一些最受欢迎的XAI方法的比较,并研究了它们在解释CNN的地球科学应用决策方面的保真度。我们的目标是提高对这些方法的理论局限性的认识,并深入了解相对优势和缺点,以帮助指导最佳实践。所考虑的XAI方法首先应用于理想化的归因基准,在该基准中,该网络解释的基础真实是先验,以帮助客观地评估其性能。其次,我们将XAI应用于与气候相关的预测设置,即解释CNN,该CNN经过训练,可以预测气候模拟每日快照中的大气河流数量。我们的结果突出了XAI方法的几个重要问题(例如,梯度破碎,无法区分归因的迹象,对零输入的无知),这些迹象以前在我们的领域被忽略了,如果不谨慎地考虑,可能会导致扭曲的图片CNN决策策略。我们设想,我们的分析将激发对XAI保真度的进一步调查,并将有助于在地球科学中谨慎地实施XAI,这可能导致进一步剥削CNN和深入学习预测问题。
translated by 谷歌翻译
除了机器学习(ML)模型的令人印象深刻的预测力外,最近还出现了解释方法,使得能够解释诸如深神经网络的复杂非线性学习模型。获得更好的理解尤其重要。对于安全 - 关键的ML应用或医学诊断等。虽然这种可解释的AI(XAI)技术对分类器达到了重大普及,但到目前为止对XAI的重点进行了很少的关注(Xair)。在这篇综述中,我们澄清了XAI对回归和分类任务的基本概念差异,为Xair建立了新的理论见解和分析,为Xair提供了真正的实际回归问题的示范,最后讨论了该领域仍然存在的挑战。
translated by 谷歌翻译
能够分析和量化人体或行为特征的系统(称为生物识别系统)正在使用和应用变异性增长。由于其从手工制作的功能和传统的机器学习转变为深度学习和自动特征提取,因此生物识别系统的性能增加到了出色的价值。尽管如此,这种快速进步的成本仍然尚不清楚。由于其不透明度,深层神经网络很难理解和分析,因此,由错误动机动机动机的隐藏能力或决定是潜在的风险。研究人员已经开始将注意力集中在理解深度神经网络及其预测的解释上。在本文中,我们根据47篇论文的研究提供了可解释生物识别技术的当前状态,并全面讨论了该领域的发展方向。
translated by 谷歌翻译
Deep Neural Networks (DNNs) have demonstrated impressive performance in complex machine learning tasks such as image classification or speech recognition. However, due to their multi-layer nonlinear structure, they are not transparent, i.e., it is hard to grasp what makes them arrive at a particular classification or recognition decision given a new unseen data sample. Recently, several approaches have been proposed enabling one to understand and interpret the reasoning embodied in a DNN for a single test image. These methods quantify the "importance" of individual pixels wrt the classification decision and allow a visualization in terms of a heatmap in pixel/input space. While the usefulness of heatmaps can be judged subjectively by a human, an objective quality measure is missing. In this paper we present a general methodology based on region perturbation for evaluating ordered collections of pixels such as heatmaps. We compare heatmaps computed by three different methods on the SUN397, ILSVRC2012 and MIT Places data sets. Our main result is that the recently proposed Layer-wise Relevance Propagation (LRP) algorithm qualitatively and quantitatively provides a better explanation of what made a DNN arrive at a particular classification decision than the sensitivity-based approach or the deconvolution method. We provide theoretical arguments to explain this result and discuss its practical implications. Finally, we investigate the use of heatmaps for unsupervised assessment of neural network performance.
translated by 谷歌翻译
AI解释性提高了模型的透明度,使它们更值得信赖。这种目标是由于深受深层学习模型的出现而闻名,这是模糊的;即使在图像的域名中,深度学习最多,解释性仍然很差。在图像识别领域,已经提出了许多特征归因方法,其目的是解释使用视觉提示的模型的行为。但是,到目前为止没有建立指标以客观地评估和选择这些方法。在本文中,我们提出了一致的特征归因方法的评估度量 - 焦点 - 旨在量化其对任务的一致性。虽然最先前的工作为样本增加了分配噪声,但我们介绍了一种方法来增加分布中的噪声。这是通过来自不同类别的实例的马赛克来完成的,并且这些解释这些生成。在那些时,我们计算视觉伪精度度量,焦点。首先,我们通过一系列随机化实验表明了这种方法的鲁棒性。然后我们使用焦点来比较遍布几个CNN架构和分类数据集的六种流行的解释性技术。我们的结果发现一些方法可以持续可靠(LRP,GradCam),而其他方法会产生类别无关的解释(Smoothgrad,Ig)。最后,我们介绍了另一个焦点的应用,使用它来识别和表征模型中的偏差。这使得偏见管理工具,在另一个小步迈向值得信赖的AI。
translated by 谷歌翻译
Nonlinear methods such as Deep Neural Networks (DNNs) are the gold standard for various challenging machine learning problems, e.g., image classification, natural language processing or human action recognition. Although these methods perform impressively well, they have a significant disadvantage, the lack of transparency, limiting the interpretability of the solution and thus the scope of application in practice. Especially DNNs act as black boxes due to their multilayer nonlinear structure. In this paper we introduce a novel methodology for interpreting generic multilayer neural networks by decomposing the network classification decision into contributions of its input elements. Although our focus is on image classification, the method is applicable to a broad set of input data, learning tasks and network architectures. Our method is based on deep Taylor decomposition and efficiently utilizes the structure of the network by backpropagating the explanations from the output to the input layer. We evaluate the proposed method empirically on the MNIST and ILSVRC data sets.
translated by 谷歌翻译
最近有一个努力使机器学习模型更加可解释,以便可以信任他们的性能。尽管成功,但这些方法主要集中在深度学习方法上,而机器学习中的基本优化方法(例如线性程序(LP))已被排除在外。即使可以将LPS视为白框或Clearbox模型,就输入和输出之间的关系而言,它们也不容易理解。由于线性程序仅为优化问题提供最佳解决方案,因此进一步的解释通常会有所帮助。在这项工作中,我们将解释神经网络的归因方法扩展到线性程序。这些方法通过提供模型输入的相关性分数来解释模型,以显示每个输入对输出的影响。除了使用经典的基于梯度的归因方法,我们还提出了一种将基于扰动的归因方法适应LPS的方法。我们对几种不同的线性和整数问题的评估表明,归因方法可以为线性程序生成有用的解释。但是,我们还证明了直接使用神经归因方法可能会带来一些缺点,因为这些方法在神经网络上的属性不一定会转移到线性程序中。如果线性程序具有多个最佳解决方案,则方法也可能会挣扎,因为求解器只是返回一个可能的解决方案。希望我们的结果可以用作朝这个方向进行进一步研究的好起点。
translated by 谷歌翻译
越来越多的电子健康记录(EHR)数据和深度学习技术进步的越来越多的可用性(DL)已经引发了在开发基于DL的诊断,预后和治疗的DL临床决策支持系统中的研究兴趣激增。尽管承认医疗保健的深度学习的价值,但由于DL的黑匣子性质,实际医疗环境中进一步采用的障碍障碍仍然存在。因此,有一个可解释的DL的新兴需求,它允许最终用户评估模型决策,以便在采用行动之前知道是否接受或拒绝预测和建议。在这篇综述中,我们专注于DL模型在医疗保健中的可解释性。我们首先引入深入解释性的方法,并作为该领域的未来研究人员或临床从业者的方法参考。除了这些方法的细节之外,我们还包括对这些方法的优缺点以及它们中的每个场景都适合的讨论,因此感兴趣的读者可以知道如何比较和选择它们供使用。此外,我们讨论了这些方法,最初用于解决一般域问题,已经适应并应用于医疗保健问题以及如何帮助医生更好地理解这些数据驱动技术。总的来说,我们希望这项调查可以帮助研究人员和从业者在人工智能(AI)和临床领域了解我们为提高其DL模型的可解释性并相应地选择最佳方法。
translated by 谷歌翻译
Saliency methods have emerged as a popular tool to highlight features in an input deemed relevant for the prediction of a learned model. Several saliency methods have been proposed, often guided by visual appeal on image data. In this work, we propose an actionable methodology to evaluate what kinds of explanations a given method can and cannot provide. We find that reliance, solely, on visual assessment can be misleading. Through extensive experiments we show that some existing saliency methods are independent both of the model and of the data generating process. Consequently, methods that fail the proposed tests are inadequate for tasks that are sensitive to either data or model, such as, finding outliers in the data, explaining the relationship between inputs and outputs that the model learned, and debugging the model. We interpret our findings through an analogy with edge detection in images, a technique that requires neither training data nor model. Theory in the case of a linear model and a single-layer convolutional neural network supports our experimental findings 2 . * Work done during the Google AI Residency Program. 2 All code to replicate our findings will be available here: https://goo.gl/hBmhDt 3 We refer here to the broad category of visualization and attribution methods aimed at interpreting trained models. These methods are often used for interpreting deep neural networks particularly on image data.
translated by 谷歌翻译
我们描述了一种新颖的归因方法,它基于敏感性分析并使用Sobol指数。除了模拟图像区域的个人贡献之外,索尔索尔指标提供了一种有效的方法来通过方差镜头捕获图像区域与其对神经网络的预测的贡献之间的高阶相互作用。我们描述了一种通过使用扰动掩模与有效估计器耦合的扰动掩模来计算用于高维问题的这些指标的方法,以处理图像的高维度。重要的是,我们表明,与其他黑盒方法相比,该方法对视觉(和语言模型)的标准基准测试的标准基准有利地导致了有利的分数 - 甚至超过最先进的白色的准确性 - 需要访问内部表示的箱方法。我们的代码是免费的:https://github.com/fel-thomas/sobol-attribution-method
translated by 谷歌翻译
自我监督的视觉学习彻底改变了深度学习,成为域中的下一个重大挑战,并通过大型计算机视觉基准的监督方法迅速缩小了差距。随着当前的模型和培训数据成倍增长,解释和理解这些模型变得关键。我们研究了视力任务的自我监督学习领域中可解释的人工智能的问题,并提出了了解经过自学训练的网络及其内部工作的方法。鉴于自我监督的视觉借口任务的巨大多样性,我们缩小了对理解范式的关注,这些范式从同一图像的两种观点中学习,主要是旨在了解借口任务。我们的工作重点是解释相似性学习,并且很容易扩展到所有其他借口任务。我们研究了两个流行的自我监督视觉模型:Simclr和Barlow Twins。我们总共开发了六种可视化和理解这些模型的方法:基于扰动的方法(条件闭塞,上下文无形的条件闭塞和成对的闭塞),相互作用-CAM,特征可视化,模型差异可视化,平均变换和像素无形。最后,我们通过将涉及单个图像的监督图像分类系统量身定制的众所周知的评估指标来评估这些解释,并将其涉及两个图像的自我监督学习领域。代码为:https://github.com/fawazsammani/xai-ssl
translated by 谷歌翻译
荒野地区提供了重要的生态和社会益处,并且有迫切的理由可以发现其积极特征和生态功能在哪里存在并能够蓬勃发展。我们将新颖的可解释的机器学习技术应用于卫星图像,该图像显示了Fennoscandia的野生和人为区域。在可解释的人工神经网络中阻塞某些激活,我们完成了有关野生和人为特征的全面敏感性分析。这使我们能够预测详细的高分辨率灵敏度图,以突出这些特征。我们的人工神经网络提供了可解释的激活空间,增加了对我们方法的信心。在激活空间内,区域是语义上的。我们的方法可以解释用于遥感的机器学习,提供了对现有荒野进行全面分析的机会,并与保护工作具有实际相关性。
translated by 谷歌翻译
在人脸识别系统中实现高性能的必要因素是其样本的质量。由于这些系统涉及各种日常生活,因此对人类可以理解的面部识别过程具有很强的需要。在这项工作中,我们介绍了像素级面部图像质量的概念,该概念确定面部图像中像素的效用以进行识别。鉴于任意面部识别网络,在这项工作中,我们提出了一种无培训方法来评估面部图像的像素级质量。为此,估计输入图像的特定模型质量值并用于构建特定于样本的质量回归模型。基于该模型,基于质量的梯度被回到传播并转换为像素级质量估计。在实验中,我们基于真实和人工扰动的基于实际和人工障碍来定量和定量地研究了像素级质量的有意义性。在所有场景中,结果表明,所提出的解决方案产生有意义的像素级质量。该代码可公开可用。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译