Intermediate features of a pre-trained model have been shown informative for making accurate predictions on downstream tasks, even if the model backbone is kept frozen. The key challenge is how to utilize these intermediate features given their gigantic amount. We propose visual query tuning (VQT), a simple yet effective approach to aggregate intermediate features of Vision Transformers. Through introducing a handful of learnable ``query'' tokens to each layer, VQT leverages the inner workings of Transformers to ``summarize'' rich intermediate features of each layer, which can then be used to train the prediction heads of downstream tasks. As VQT keeps the intermediate features intact and only learns to combine them, it enjoys memory efficiency in training, compared to many other parameter-efficient fine-tuning approaches that learn to adapt features and need back-propagation through the entire backbone. This also suggests the complementary role between VQT and those approaches in transfer learning. Empirically, VQT consistently surpasses the state-of-the-art approach that utilizes intermediate features for transfer learning and outperforms full fine-tuning in many cases. Compared to parameter-efficient approaches that adapt features, VQT achieves much higher accuracy under memory constraints. Most importantly, VQT is compatible with these approaches to attain even higher accuracy, making it a simple add-on to further boost transfer learning.
translated by 谷歌翻译
当前的Modus Operandi在改编预训练的模型中涉及更新所有骨干参数,即,完整的微调。本文介绍了视觉及时调整(VPT),作为视觉中大规模变压器模型的全面微调的有效替代方案。VPT从最近有效地调整大型语言模型的最新进展中汲取灵感,在输入空间中仅引入了少量的可训练参数(少于模型参数),同时保持模型骨架冻结。通过对各种下游识别任务的广泛实验,我们表明VPT与其他参数有效调整协议相比获得了显着的性能增长。最重要的是,在许多情况下,VPT甚至在模型能力和培训数据量表的许多情况下都胜过全面的微调,同时降低了每任务的存储成本。
translated by 谷歌翻译
传输学习方法旨在使用在丰富的源域上掠过的模型来提高数据稀缺目标域中的性能。一种成本效益的策略,线性探测涉及冻结源模型并培训目标域的新分类头。此策略的表现优于更昂贵但最先进的方法 - 将源模型的所有参数微调到目标域 - 可能是因为微调允许模型从中间层利用有用的信息否则被稍后的净化层丢弃。我们探讨了这些中间层可能直接剥削的假设。我们提出了一种方法,头对脚趾探测(Head2ToE),其从源模型的所有层中选择特征,以训练目标域的分类头。在VTAB-1K的评估中,Head2Toe与平均微调获得的性能相匹配,同时减少培训和储存成本一百倍或更多,但批判性地,用于分配转移,头部2ToE优于微调。
translated by 谷歌翻译
Existing fine-tuning methods either tune all parameters of the pre-trained model (full fine-tuning), which is not efficient, or only tune the last linear layer (linear probing), which suffers a significant accuracy drop compared to the full fine-tuning. In this paper, we propose a new parameter-efficient fine-tuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance of full fine-tuning. In this way, SSF also surprisingly outperforms other parameter-efficient fine-tuning approaches even with a smaller number of tunable parameters. Furthermore, different from some existing parameter-efficient fine-tuning methods (e.g., Adapter or VPT) that introduce the extra parameters and computational cost in the training and inference stages, SSF only adds learnable parameters during the training stage, and these additional parameters can be merged into the original pre-trained model weights via re-parameterization in the inference phase. With the proposed SSF, our model obtains 2.46% (90.72% vs. 88.54%) and 11.48% (73.10% vs. 65.57%) performance improvement on FGVC and VTAB-1k in terms of Top-1 accuracy compared to the full fine-tuning but only fine-tuning about 0.3M parameters. We also conduct amounts of experiments in various model families (CNNs, Transformers, and MLPs) and datasets. Results on 26 image classification datasets in total and 3 robustness & out-of-distribution datasets show the effectiveness of SSF. Code is available at https://github.com/dongzelian/SSF.
translated by 谷歌翻译
While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train. 1
translated by 谷歌翻译
在计算机视觉中广泛采用了预处理 - 最终的范式。但是,随着视觉变压器(VIT)的尺寸呈指数增长,鉴于较重的存储空间的头顶,完整的燃料变得过于望而却步。最近的研究是由参数效率转移学习(PETL)的动机,最近的研究试图插入轻巧的适应模块(例如,适配器层或及时令牌)以预处理VIT,并且仅释放这些模块,而预处理的权重则是冷冻的。但是,这些模块最初是为了芬太尼语言模型而提出的。尽管对VIT的口号很好,但他们的设计缺乏视觉任务的先验知识。在本文中,我们建议在VIT中构建卷积旁路(Convass)作为适应模块,仅引入了可训练参数的少量(少于模型参数的0.5%)以适应大型VIT。与其他PETL方法不同,卷积层的硬编码电感偏置的互惠受益,因此更适合视觉任务,尤其是在低数据表格中。 VTAB-1K基准和少量学习数据集的实验结果表明,Convass的表现优于当前面向语言的适应模块,这证明了对视觉模型量身定制面向视觉的适应模块的必要性。
translated by 谷歌翻译
最近出现了有希望的表现,利用大型预训练的模型来实现各种感兴趣的下游任务。由于模型的规模不断增长,因此,在模型培训和存储方面,基于标准的完整任务适应策略的成本高昂。这导致了参数有效传输学习的新研究方向。但是,现有的尝试通常集中在预训练模型的相同模式(例如图像理解)的下游任务上。这会产生限制,因为在某些特定的方式(例如,视频理解)中,具有足够知识的强大预训练模型较少或不可用。在这项工作中,我们研究了这样一种新型的跨模式转移学习设置,即参数有效的图像到视频传输学习。为了解决此问题,我们为每个视频任务提出了一个新的时空适配器(ST-ADAPTER),以进行参数有效调整。凭借紧凑设计中的内置时空推理能力,ST-ADAPTER可以实现预训练的图像模型,而无需时间知识,以小(〜8%)的每任务参数成本来理解动态视频内容,以大约需要与以前的工作相比,更新参数少20倍。在视频动作识别任务上进行的广泛实验表明,我们的ST-ADAPTER可以匹配甚至优于强大的完整微调策略和最先进的视频模型,同时享受参数效率的优势。
translated by 谷歌翻译
变形金刚和蒙版语言建模在计算机视觉中很快被视为视觉变压器和蒙版图像建模(MIM)。在这项工作中,我们认为由于图像中令牌的数量和相关性,图像令牌掩盖与文本中的令牌掩盖有所不同。特别是,为了为MIM产生具有挑战性的借口任务,我们主张从随机掩盖到知情掩盖的转变。我们在基于蒸馏的MIM的背景下开发并展示了这一想法,其中教师变压器编码器生成了一个注意力图,我们用它来指导学生为学生指导掩盖。因此,我们引入了一种新颖的掩蔽策略,称为注意引导蒙版(ATTMASK),我们证明了其对基于密集蒸馏的MIM以及基于普通蒸馏的自然剥离的自助力学习的有效性。我们确认ATTMASK可以加快学习过程,并提高各种下游任务的性能。我们在https://github.com/gkakogeorgiou/attmask上提供实现代码。
translated by 谷歌翻译
在过去的几年中,视觉模型的规模呈指数增长,尤其是在视觉变压器出现之后。这激发了参数有效调整方法的开发,例如学习适配器层或视觉及时令牌,这允许训练一小部分模型参数,而从预训练中获得的绝大多数则可以冷冻。但是,设计适当的调整方法是不平凡的:可能需要尝试冗长的设计选择列表,更不用说每个下游数据集通常都需要自定义设计。在本文中,我们将现有的参数效率调整方法视为“及时模块”,并提出了神经及时搜索(Noah),这是一种新颖的方法,可以学习大型视觉模型,通过神经体系结构搜索算法的及时模型的最佳设计, ,专门针对每个下游数据集。通过对20多个视觉数据集进行广泛的实验,我们证明了Noah(i)优于单个提示模块,(ii)具有良好的少数学习能力,并且(iii)可以域名。代码和型号可在https://github.com/davidzhangyuanhan/noah上找到。
translated by 谷歌翻译
从自然语言监督中学习视觉表示,最近在许多开创性的作品中表现出了巨大的希望。通常,这些具有语言的视觉模型表现出对各种数据集和任务的强大可传递性。但是,由于缺乏易于使用的评估工具包和公共基准,评估这些模型的可转让性仍然很具有挑战性。为了解决这个问题,我们构建了高级版(评估语言的视觉任务级传输),这是用于评估(预训练)语言增强视觉模型的第一个基准和工具包。升华由三个组成部分组成。 (i)数据集。作为下游评估套件,它由20个图像分类数据集和35个对象检测数据集组成,每个数据集都用外部知识来增强。 (ii)工具包。开发了自动高参数调谐工具包,以促进下游任务的模型评估。 (iii)指标。多种评估指标用于测量样品效率(零射击和少量)和参数效率(线性探测和完整模型微调)。我们在https://computer-vision-in-the-wild.github.io/elevater/上公开发布leverater
translated by 谷歌翻译
持续学习旨在使单个模型能够学习一系列任务,而不会造成灾难性的遗忘。表现最好的方法通常需要排练缓冲区来存储过去的原始示例以进行经验重播,但是,由于隐私和内存约束,这会限制其实际价值。在这项工作中,我们提出了一个简单而有效的框架,即DualPrompt,该框架学习了一组称为提示的参数,以正确指示预先训练的模型,以依次学习到达的任务,而不会缓冲过去的示例。 DualPrompt提出了一种新颖的方法,可以将互补提示附加到预训练的主链上,然后将目标提出为学习任务不变和特定于任务的“指令”。通过广泛的实验验证,双启示始终在具有挑战性的课堂开发环境下始终设置最先进的表现。尤其是,双启示的表现优于最近的高级持续学习方法,其缓冲尺寸相对较大。我们还引入了一个更具挑战性的基准Split Imagenet-R,以帮助概括无连续的持续学习研究。源代码可在https://github.com/google-research/l2p上找到。
translated by 谷歌翻译
大型视觉基础模型在自然图像上的视觉任务上取得了重大进展,在这种情况下,视觉变压器是其良好可扩展性和表示能力的主要选择。但是,在现有模型仍处于小规模的情况下,遥感社区(RS)社区中大型模型的利用仍然不足,从而限制了性能。在本文中,我们使用约1亿个参数求助于普通视觉变压器,并首次尝试提出针对RS任务定制的大型视觉模型,并探索如此大型模型的性能。具体而言,要处理RS图像中各种取向的较大图像大小和对象,我们提出了一个新的旋转型尺寸的窗户注意力,以替代变形金刚中的原始关注,这可以大大降低计算成本和内存足迹,同时学习更好的对象通过从生成的不同窗口中提取丰富上下文来表示。关于检测任务的实验证明了我们模型的优越性,超过了所有最新模型,在DOTA-V1.0数据集上实现了81.16 \%地图。与现有的高级方法相比,我们在下游分类和细分任务上的模型结果也证明了竞争性能。进一步的实验显示了我们模型对计算复杂性和几乎没有学习的优势。代码和模型将在https://github.com/vitae-transformer/remote-sensing-rvsa上发布
translated by 谷歌翻译
视频识别是由端到端学习范式主导的 - 首先初始化具有预审预周化图像模型的视频识别模型,然后对视频进行端到端培训。这使视频网络能够受益于验证的图像模型。但是,这需要大量的计算和内存资源,以便在视频上进行填充以及直接使用预审计的图像功能的替代方案,而无需填充图像骨架会导致结果不足。幸运的是,在对比视力语言预训练(剪辑)方面的最新进展为视觉识别任务的新途径铺平了道路。这些模型在大型开放式图像文本对数据上进行了预测,以丰富的语义学习强大的视觉表示。在本文中,我们介绍了有效的视频学习(EVL) - 一种有效的框架,用于直接训练具有冷冻剪辑功能的高质量视频识别模型。具体来说,我们采用轻型变压器解码器并学习查询令牌,从剪辑图像编码器中动态收集帧级空间特征。此外,我们在每个解码器层中采用局部时间模块,以发现相邻帧及其注意力图的时间线索。我们表明,尽管有效地使用冷冻的骨干训练,但我们的模型在各种视频识别数据集上学习了高质量的视频表示。代码可在https://github.com/opengvlab/feld-video-rencognition上找到。
translated by 谷歌翻译
本文显示屏蔽的自动化器(MAE)是可扩展的自我监督学习者,用于计算机愿景。我们的MAE方法很简单:我们掩盖输入图像的随机补丁并重建缺失像素。它基于两个核心设计。首先,我们开发一个不对称的编码器解码器架构,其中编码器仅在掩码的可见子集(没有掩码令牌)上,以及重量解码器,该重量解码器从潜像和掩码令牌重建原始图像。其次,我们发现掩蔽了高比例的输入图像,例如,75%,产生非凡和有意义的自我监督任务。耦合这两种设计使我们能够有效且有效地培训大型模型:我们加速培训(3倍或更多)并提高准确性。我们可扩展的方法允许学习概括的高容量模型:例如,Vanilla Vit-Maxim模型在使用Imagenet-1K数据的方法中实现最佳准确性(87.8%)。下游任务中的转移性能优于监督预培训并显示有前途的缩放行为。
translated by 谷歌翻译
视觉变压器(VIT)已被证明可以在广泛的视觉应用中获得高度竞争性的性能,例如图像分类,对象检测和语义图像分割。与卷积神经网络相比,通常发现视觉变压器的较弱的电感偏差会在较小的培训数据集上培训时,会增加对模型正则化或数据增强的依赖(简称为“ AUGREG”)。我们进行了一项系统的实证研究,以便更好地了解培训数据,AUGREG,模型大小和计算预算之间的相互作用。作为这项研究的一个结果,我们发现增加的计算和AUGREG的组合可以产生与在数量级上训练的模型相同的训练数据的模型:我们在公共Imagenet-21K数据集中培训各种尺寸的VIT模型在较大的JFT-300M数据集上匹配或超越其对手的培训。
translated by 谷歌翻译
Vision Transformer (ViT) extracts the final representation from either class token or an average of all patch tokens, following the architecture of Transformer in Natural Language Processing (NLP) or Convolutional Neural Networks (CNNs) in computer vision. However, studies for the best way of aggregating the patch tokens are still limited to average pooling, while widely-used pooling strategies, such as max and GeM pooling, can be considered. Despite their effectiveness, the existing pooling strategies do not consider the architecture of ViT and the channel-wise difference in the activation maps, aggregating the crucial and trivial channels with the same importance. In this paper, we present Group Generalized Mean (GGeM) pooling as a simple yet powerful pooling strategy for ViT. GGeM divides the channels into groups and computes GeM pooling with a shared pooling parameter per group. As ViT groups the channels via a multi-head attention mechanism, grouping the channels by GGeM leads to lower head-wise dependence while amplifying important channels on the activation maps. Exploiting GGeM shows 0.1%p to 0.7%p performance boosts compared to the baselines and achieves state-of-the-art performance for ViT-Base and ViT-Large models in ImageNet-1K classification task. Moreover, GGeM outperforms the existing pooling strategies on image retrieval and multi-modal representation learning tasks, demonstrating the superiority of GGeM for a variety of tasks. GGeM is a simple algorithm in that only a few lines of code are necessary for implementation.
translated by 谷歌翻译
Recent work has explored the potential to adapt a pre-trained vision transformer (ViT) by updating only a few parameters so as to improve storage efficiency, called parameter-efficient transfer learning (PETL). Current PETL methods have shown that by tuning only 0.5% of the parameters, ViT can be adapted to downstream tasks with even better performance than full fine-tuning. In this paper, we aim to further promote the efficiency of PETL to meet the extreme storage constraint in real-world applications. To this end, we propose a tensorization-decomposition framework to store the weight increments, in which the weights of each ViT are tensorized into a single 3D tensor, and their increments are then decomposed into lightweight factors. In the fine-tuning process, only the factors need to be updated and stored, termed Factor-Tuning (FacT). On VTAB-1K benchmark, our method performs on par with NOAH, the state-of-the-art PETL method, while being 5x more parameter-efficient. We also present a tiny version that only uses 8K (0.01% of ViT's parameters) trainable parameters but outperforms full fine-tuning and many other PETL methods such as VPT and BitFit. In few-shot settings, FacT also beats all PETL baselines using the fewest parameters, demonstrating its strong capability in the low-data regime.
translated by 谷歌翻译
最近,自我监督的蒙面自动编码器(MAE)因其令人印象深刻的表示能力而引起了前所未有的关注。但是,借口任务是掩盖的图像建模(MIM),重建缺失的本地贴片,缺乏对图像的全局理解。本文通过添加有监督的分类部门将MAE扩展到了完全监督的环境,从而使Mae可以从Golden Labels中有效地学习全球功能。所提出的监督MAE(Supmae)仅利用图像贴片的可见子集进行分类,这与使用所有图像贴片的标准监督预训练不同。通过实验,我们证明了Supmae不仅更有效地训练,而且还学会了更健壮和可转移的功能。具体而言,Supmae在使用VIT-B/16模型的ImageNet上评估时仅使用30%的计算来实现MAE的可比性。 Supmae对ImageNet变体的鲁棒性和转移学习绩效优于MAE和标准监督前培训对手。代码将公开可用。
translated by 谷歌翻译
在过去的几年中,基于自我注意力的变压器模型一直在主导许多计算机视觉任务。它们的出色模型质量在很大程度上取决于标记过多的图像数据集。为了减少对大型标记数据集的依赖,基于重建的掩盖自动编码器正在获得流行,这些自动编码器从未标记的图像中学习了高质量的可转移表示形式。出于同样的目的,最近弱监督的图像预处理方法探索了图像随附的文本字幕的语言监督。在这项工作中,我们提出了对语言辅助代表的预读图像,称为米兰。我们的预处理目标不是预测原始像素或低级别的特征,而是用使用字幕监督获得的大量语义信号来重建图像特征。此外,为了适应我们的重建目标,我们提出了更有效的促使解码器体系结构和语义意识到的掩码采样机制,从而进一步推进了预告片模型的传输性能。实验结果表明,米兰的精度比以前的工作更高。当掩盖的自动编码器在ImagEnet-1K数据集上进行了预估计并以224x224的输入分辨率进行了填充时,米兰在VITB/16上的前1位准确性达到了85.4%,使以前的先前最先前的艺术品达到1%。在下游的语义分割任务中,米兰在ADE20K数据集上使用VIT-B/16骨架达到52.7 MIOU,表现优于先前的蒙版预读结果4分。
translated by 谷歌翻译
我们可以训练一个能够处理多个模态和数据集的单个变压器模型,同时分享几乎所有的学习参数?我们呈现Polyvit,一种培训的模型,在图像,音频和视频上接受了讲述这个问题。通过在单一的方式上培训不同的任务,我们能够提高每个任务的准确性,并在5个标准视频和音频分类数据集中实现最先进的结果。多种模式和任务上的共同训练Polyvit会导致一个更具参数效率的模型,并学习遍历多个域的表示。此外,我们展示了实施的共同培训和实用,因为我们不需要调整数据集的每个组合的超级参数,但可以简单地调整来自标准的单一任务培训。
translated by 谷歌翻译