这项工作介绍了用于户外机器人技术的视觉跨视图定位。给定一个地面颜色图像和包含本地周围环境的卫星贴片,任务是确定地面摄像头在卫星贴片中的位置。相关工作解决了用于射程传感器(LIDAR,RADAR)的此任务,但对于视觉,仅作为初始跨视图图像检索步骤之后的次要回归步骤。由于还可以通过任何粗糙的本地化(例如,从GPS/GNSS,时间过滤)检索局部卫星贴片,因此我们删除图像检索目标并仅关注度量定位。我们设计了一种具有密集的卫星描述符的新型网络体系结构,在瓶颈处与相似性匹配(而不是图像检索中的输出)以及一个密集的空间分布作为输出,以捕获多模式的定位歧义。我们将使用全局图像描述符的最新回归基线进行比较。关于最近提出的活力和牛津机器人数据集的定量和定性实验结果验证了我们的设计。产生的概率与定位精度相关,甚至可以在未知的方向时大致估计地面摄像头的标题。总体而言,与最先进的面积相比,我们的方法将中值度量定位误差降低了51%,37%和28%,而在同一区域,整个区域和整个时间之间分别概括。
translated by 谷歌翻译
This work addresses cross-view camera pose estimation, i.e., determining the 3-DoF camera pose of a given ground-level image w.r.t. an aerial image of the local area. We propose SliceMatch, which consists of ground and aerial feature extractors, feature aggregators, and a pose predictor. The feature extractors extract dense features from the ground and aerial images. Given a set of candidate camera poses, the feature aggregators construct a single ground descriptor and a set of rotational equivariant pose-dependent aerial descriptors. Notably, our novel aerial feature aggregator has a cross-view attention module for ground-view guided aerial feature selection, and utilizes the geometric projection of the ground camera's viewing frustum on the aerial image to pool features. The efficient construction of aerial descriptors is achieved by using precomputed masks and by re-assembling the aerial descriptors for rotated poses. SliceMatch is trained using contrastive learning and pose estimation is formulated as a similarity comparison between the ground descriptor and the aerial descriptors. SliceMatch outperforms the state-of-the-art by 19% and 62% in median localization error on the VIGOR and KITTI datasets, with 3x FPS of the fastest baseline.
translated by 谷歌翻译
地理定位的概念是指确定地球上的某些“实体”的位置的过程,通常使用全球定位系统(GPS)坐标。感兴趣的实体可以是图像,图像序列,视频,卫星图像,甚至图像中可见的物体。由于GPS标记媒体的大规模数据集由于智能手机和互联网而迅速变得可用,而深入学习已经上升以提高机器学习模型的性能能力,因此由于其显着影响而出现了视觉和对象地理定位的领域广泛的应用,如增强现实,机器人,自驾驶车辆,道路维护和3D重建。本文提供了对涉及图像的地理定位的全面调查,其涉及从捕获图像(图像地理定位)或图像内的地理定位对象(对象地理定位)的地理定位的综合调查。我们将提供深入的研究,包括流行算法的摘要,对所提出的数据集的描述以及性能结果的分析来说明每个字段的当前状态。
translated by 谷歌翻译
本文解决了基于跨视频的相机本地化(CVL)的问题。任务是通过利用其过去观察结果的信息来定位查询摄像机,即在以前的时间邮票处观察到的图像连续序列,并将它们与大型开销视图卫星图像匹配。该任务的关键挑战是为顺序地面视图图像学习强大的全局功能描述符,同时考虑其与参考卫星图像的域对齐。为此,我们介绍了CVLNET,该CVLNET首先通过探索地面和开头几何对应关系,然后利用预测图像之间的照片一致性来形成全局表示,首先将顺序地面视图图像投射到高架视图中。这样,跨视图域的差异就被桥接了。由于参考卫星图像通常会预先编写并定期采样,因此查询相机位置与其匹配的卫星图像中心之间始终存在未对准。在此激励的情况下,我们建议在相似性匹配之前估算查询摄像机的相对位移对卫星图像。在此位移估计过程中,我们还考虑了相机位置的不确定性。例如,相机不太可能在树上。为了评估所提出方法的性能,我们从Google Map中为Kitti数据集收集卫星图像,并构建一个新的基于跨视频的本地化本地化基准数据集Kitti-CVL。广泛的实验证明了基于视频的本地化对基于单个图像的本地化的有效性以及每个提出的模块比其他替代方案的优越性。
translated by 谷歌翻译
随着自动驾驶行业正在缓慢成熟,视觉地图本地化正在迅速成为尽可能准确定位汽车的标准方法。由于相机或激光镜等视觉传感器返回的丰富数据,研究人员能够构建具有各种细节的不同类型的地图,并使用它们来实现高水平的车辆定位准确性和在城市环境中的稳定性。与流行的SLAM方法相反,视觉地图本地化依赖于预先构建的地图,并且仅通过避免误差积累或漂移来提高定位准确性。我们将视觉地图定位定义为两个阶段的过程。在位置识别的阶段,通过将视觉传感器输出与一组地理标记的地图区域进行比较,可以确定车辆在地图中的初始位置。随后,在MAP指标定位的阶段,通过连续将视觉传感器的输出与正在遍历的MAP的当前区域进行对齐,对车辆在地图上移动时进行了跟踪。在本文中,我们调查,讨论和比较两个阶段的基于激光雷达,基于摄像头和跨模式的视觉图本地化的最新方法,以突出每种方法的优势。
translated by 谷歌翻译
自动驾驶汽车的现有空间定位技术主要使用预先建造的3D-HD地图,通常使用调查级3D映射车制造,这不仅昂贵,而且还费力。本文表明,通过使用现成的高清卫星图像作为现成的地图,我们能够实现跨视图的定位,直至令人满意的精度,从而提供了更便宜,更实用的方法本土化。尽管将卫星图像用于跨视图本地化的想法并不是什么新鲜事物,但以前的方法几乎只将任务视为图像检索,即将车辆捕获的地面视图与卫星图像匹配。本文提出了一种新颖的跨视图定位方法,该方法与图像检索的共同智慧背道而驰。具体而言,我们的方法开发(1)几何形状 - 分配特征提取器(GAFE),该提取器(GAFE)利用了3D点来弥合地面视图和高架视图之间的几何差距,(2)采用三重态分支,以鼓励姿势感知的特征提取,(3)使用Levenberg-Marquardt(LM)算法的递归姿势精炼分支(RPRB),将初始姿势与真实车辆的效果对齐。我们的方法在Kitti和Ford Multi-AV季节性数据集上被验证为地面视图和Google Maps作为卫星视图。结果表明,我们的方法在跨视图定位方面具有优势,分别在1米和$ 2^\ circ $之内与空间和角度误差。该代码将公开可用。
translated by 谷歌翻译
现代光学卫星传感器使高分辨率立体声重建。但是在观察地球从空间推动立体声匹配时挑战成像条件。在实践中,由此产生的数字表面模型(DSM)相当嘈杂,并且通常不会达到3D城市建模等高分辨率应用所需的准确性。可以说,基于低电平图像相似性的立体声对应不足,并且应该互补关于超出基本局部平滑度的预期表面几何的先验知识。为此,我们介绍了Resptepth,这是一个卷积神经网络,其在示例数据之前学习如此表达几何。 Restepth在调节图像上的细化时改进初始原始的立体声DSM。即,它充当了一个智能,学习的后处理过滤器,可以无缝地补充任何立体声匹配管道。在一系列实验中,我们发现所提出的方法始终如一地改善了定量和定性的立体声DSM。我们表明,网络权重中的先前编码捕获了城市设计的有意义的几何特征,这也概括了不同地区,甚至从一个城市到另一个城市。此外,我们证明,通过对各种立体对的训练,RESPTH可以在成像条件和采集几何体中获得足够的不变性。
translated by 谷歌翻译
本文通过将地面图像与高架视图卫星地图匹配,解决了车辆安装的相机本地化问题。现有方法通常将此问题视为跨视图图像检索,并使用学习的深度特征将地面查询图像与卫星图的分区(例如,小补丁)匹配。通过这些方法,定位准确性受卫星图的分配密度(通常是按数米的顺序)限制。本文偏离了图像检索的传统智慧,提出了一种新的解决方案,可以实现高度准确的本地化。关键思想是将任务提出为构成估计,并通过基于神经网络的优化解决。具体而言,我们设计了一个两分支{CNN},分别从地面和卫星图像中提取可靠的特征。为了弥合巨大的跨视界域间隙,我们求助于基于相对摄像头姿势的几何投影模块,该模块从卫星地图到地面视图。为了最大程度地减少投影功能和观察到的功能之间的差异,我们采用了可区分的Levenberg-Marquardt({lm})模块来迭代地搜索最佳相机。整个管道都是可区分的,并且端到端运行。关于标准自动驾驶汽车定位数据集的广泛实验已经证实了该方法的优越性。值得注意的是,例如,从40m x 40m的宽区域内的相机位置的粗略估计开始,我们的方法迅速降低了新的Kitti Cross-view数据集中的横向位置误差在5m之内。
translated by 谷歌翻译
在本文中,我们建议超越建立的基于视觉的本地化方法,该方法依赖于查询图像和3D点云之间的视觉描述符匹配。尽管通过视觉描述符匹配关键点使本地化高度准确,但它具有重大的存储需求,提出了隐私问题,并需要长期对描述符进行更新。为了优雅地应对大规模定位的实用挑战,我们提出了Gomatch,这是基于视觉的匹配的替代方法,仅依靠几何信息来匹配图像键点与地图的匹配,这是轴承矢量集。我们的新型轴承矢量表示3D点,可显着缓解基于几何的匹配中的跨模式挑战,这阻止了先前的工作在现实环境中解决本地化。凭借额外的仔细建筑设计,Gomatch在先前的基于几何的匹配工作中改善了(1067m,95.7升)和(1.43m,34.7摄氏度),平均中位数姿势错误,同时需要7个尺寸,同时需要7片。与最佳基于视觉的匹配方法相比,几乎1.5/1.7%的存储容量。这证实了其对现实世界本地化的潜力和可行性,并为不需要存储视觉描述符的城市规模的视觉定位方法打开了未来努力的大门。
translated by 谷歌翻译
过去,图像检索是用于跨视图地理位置和无人机视觉本地化任务的主流解决方案。简而言之,图像检索的方式是通过过渡角度获得最终所需的信息,例如GPS。但是,图像检索的方式并非完全端到端。并且有一些多余的操作,例如需要提前准备功能库以及画廊构造的抽样间隔问题,这使得很难实施大规模应用程序。在本文中,我们提出了一个端到端定位方案,使用图像(FPI)查找点,该方案旨在通过源A的图像(无人机 - - 看法)。为了验证我们的框架的可行性,我们构建了一个新的数据集(UL14),该数据集旨在解决无人机视觉自我定位任务。同时,我们还建立了一个基于变压器的基线以实现端到端培训。另外,先前的评估方法不再适用于FPI框架。因此,提出了米级准确性(MA)和相对距离评分(RDS)来评估无人机定位的准确性。同时,我们初步比较了FPI和图像检索方法,而FPI的结构在速度和效率方面都可以提高性能。特别是,由于不同观点与剧烈的空间量表转换之间的巨大差异,FPI的任务仍然是巨大的挑战。
translated by 谷歌翻译
从世界上任何地方拍摄的单个地面RGB图像预测地理位置(地理位置)是一个非常具有挑战性的问题。挑战包括由于不同的环境场景而导致的图像多样性,相同位置的出现急剧变化,具体取决于一天中的时间,天气,季节和更重要的是,该预测是由单个图像可能只有一个可能只有一个图像做出的很少有地理线索。由于这些原因,大多数现有作品仅限于特定的城市,图像或全球地标。在这项工作中,我们专注于为行星尺度单位图地理定位开发有效的解决方案。为此,我们提出了转运器,这是一个统一的双分支变压器网络,在整个图像上关注细节,并在极端的外观变化下产生健壮的特征表示。转运器将RGB图像及其语义分割图作为输入,在每个变压器层之后的两个平行分支之间进行交互,并以多任务方式同时执行地理位置定位和场景识别。我们在四个基准数据集上评估转运器-IM2GPS,IM2GPS3K,YFCC4K,YFCC26K,并获得5.5%,14.1%,4.9%,9.9%的大陆级别准确度比最新的级别的精度提高。在现实世界测试图像上还验证了转运器,发现比以前的方法更有效。
translated by 谷歌翻译
跨视野地理位置化的现有工作基于将地面全景与空中图像相匹配的图像。在这项工作中,我们专注于地面视频,而不是图像,这些视频提供了对此任务很重要的其他上下文提示。没有针对此问题的现有数据集,因此我们提出了GAMA数据集,这是一个带有地面视频和相应空中图像的大型数据集。我们还提出了一种解决这个问题的新方法。在剪辑级,简短的视频剪辑与相应的空中图像匹配,后来用于获得长视频的视频级地理定位。此外,我们提出了一种分层方法,以进一步改善剪辑级地理定位。这是一个具有挑战性的数据集,未对齐和有限的视野,我们提出的方法的前1个召回率为19.4%和45.1% @1.0英里。代码和数据集可在以下链接中获得:https://github.com/svyas23/gama。
translated by 谷歌翻译
Localization of autonomous unmanned aerial vehicles (UAVs) relies heavily on Global Navigation Satellite Systems (GNSS), which are susceptible to interference. Especially in security applications, robust localization algorithms independent of GNSS are needed to provide dependable operations of autonomous UAVs also in interfered conditions. Typical non-GNSS visual localization approaches rely on known starting pose, work only on a small-sized map, or require known flight paths before a mission starts. We consider the problem of localization with no information on initial pose or planned flight path. We propose a solution for global visual localization on a map at scale up to 100 km2, based on matching orthoprojected UAV images to satellite imagery using learned season-invariant descriptors. We show that the method is able to determine heading, latitude and longitude of the UAV at 12.6-18.7 m lateral translation error in as few as 23.2-44.4 updates from an uninformed initialization, also in situations of significant seasonal appearance difference (winter-summer) between the UAV image and the map. We evaluate the characteristics of multiple neural network architectures for generating the descriptors, and likelihood estimation methods that are able to provide fast convergence and low localization error. We also evaluate the operation of the algorithm using real UAV data and evaluate running time on a real-time embedded platform. We believe this is the first work that is able to recover the pose of an UAV at this scale and rate of convergence, while allowing significant seasonal difference between camera observations and map.
translated by 谷歌翻译
位置识别是可以协助同时定位和映射(SLAM)进行循环闭合检测和重新定位以进行长期导航的基本模块。在过去的20美元中,该地点认可社区取得了惊人的进步,这吸引了在计算机视觉和机器人技术等多个领域的广泛研究兴趣和应用。但是,在复杂的现实世界情景中,很少有方法显示出有希望的位置识别性能,在复杂的现实世界中,长期和大规模的外观变化通常会导致故障。此外,在最先进的方法之间缺乏集成框架,可以应对所有挑战,包括外观变化,观点差异,对未知区域的稳健性以及现实世界中的效率申请。在这项工作中,我们调查针对长期本地化并讨论未来方向和机会的最先进方法。首先,我们研究了长期自主权中的位置识别以及在现实环境中面临的主要挑战。然后,我们回顾了最新的作品,以应对各种位置识别挑战的不同传感器方式和当前的策略的认可。最后,我们回顾了现有的数据集以进行长期本地化,并为不同的方法介绍了我们的数据集和评估API。本文可以成为该地点识别界新手的研究人员以及关心长期机器人自主权的研究人员。我们还对机器人技术中的常见问题提供了意见:机器人是否需要准确的本地化来实现长期自治?这项工作以及我们的数据集和评估API的摘要可向机器人社区公开,网址为:https://github.com/metaslam/gprs。
translated by 谷歌翻译
尽管提取了通过手工制作和基于学习的描述符实现的本地特征的进步,但它们仍然受到不符合非刚性转换的不变性的限制。在本文中,我们提出了一种计算来自静止图像的特征的新方法,该特征对于非刚性变形稳健,以避免匹配可变形表面和物体的问题。我们的变形感知当地描述符,命名优惠,利用极性采样和空间变压器翘曲,以提供旋转,尺度和图像变形的不变性。我们通过将等距非刚性变形应用于模拟环境中的对象作为指导来提供高度辨别的本地特征来培训模型架构端到端。该实验表明,我们的方法优于静止图像中的实际和现实合成可变形对象的不同数据集中的最先进的手工制作,基于学习的图像和RGB-D描述符。描述符的源代码和培训模型在https://www.verlab.dcc.ufmg.br/descriptors/neUrips2021上公开可用。
translated by 谷歌翻译
没有全球导航卫星系统(GNSS)的本地化是无人驾驶汽车(UAVS)自动操作中的关键功能。在已知地图上基于视觉的本地化可以是一个有效的解决方案,但是它受到两个主要问题的负担:根据天气和季节的不同,位置的外观不同,以及无人机相机图像和地图之间的透视差异使匹配变得难以匹配。在这项工作中,我们提出了一种本地化解决方案,该解决方案依靠无人机相机图像匹配,以与训练有素的卷积神经网络模型进行地理参与的正射击图,该模型与相机图像和地图之间的季节性外观差异(冬季夏季)不变。我们将解决方案的收敛速度和本地化精度与六种参考方法进行比较。结果表明,参考方法的重大改善,尤其是在较高的季节性变化下。我们最终证明了该方法成功本地无人机的能力,表明所提出的方法对透视变化是可靠的。
translated by 谷歌翻译
为不依赖LiDAR的自动驾驶汽车建造3D感知系统是一个关键的研究问题,因为与摄像机和其他传感器相比,LiDar系统的费用很高。当前方法使用从车辆周围的摄像机收集的多视图RGB数据,并从透视图像到2D接地平面的神经“升力”特征,从而产生“鸟类的眼光”(BEV)的特征代表车辆周围的3D空间。最近的研究重点是将功能从图像提升到BEV平面的方式。相反,我们提出了一个简单的基线模型,其中“提升”步骤简单地平均所有投影图像位置的特征,并发现它的表现优于BEV车辆分割中当前最新的。我们的消融表明,批处理大小,数据增强和输入分辨率在性能中起着很大的作用。此外,我们重新考虑了雷达输入的效用,雷达输入的实用性以前被最近的作品忽略或没有忽略。借助简单的RGB-radar融合模块,我们获得了相当大的性能提升,从而接近了启用激光雷达系统的精度。
translated by 谷歌翻译
通过将从地面视图摄像头拍摄到从卫星或飞机上拍摄的架空图像的图像,通过将代理定位在搜索区域内,将代理定位在搜索区域内,将代理定位在搜索区域中。尽管地面图像和架空图像之间的观点差异使得跨视图地理定位具有挑战性,但假设地面代理可以使用全景相机,则取得了重大进展。例如,我们先前的工作(WAG)引入了搜索区域离散化,训练损失和粒子过滤器加权的变化,从而实现了城市规模的全景跨视图地理定位。但是,由于其复杂性和成本,全景相机并未在现有机器人平台中广泛使用。非Panoramic跨视图地理定位更适用于机器人技术,但也更具挑战性。本文介绍了受限的FOV广泛地理定位(Rewag),这是一种跨视图地理定位方法,通过创建姿势吸引的嵌入并提供将粒子姿势纳入暹罗网络,将其概括为与标准的非填充地面摄像机一起使用,以供与标准的非卧型地面摄像机一起使用。 Rewag是一种神经网络和粒子滤波器系统,能够在GPS下的环境中全球定位移动代理,仅具有探测仪和90度FOV摄像机,其本地化精度与使用全景相机实现并提高本地化精度相似的定位精度与基线视觉变压器(VIT)方法相比,100倍。一个视频亮点,该视频亮点在https://youtu.be/u_obqrt8qce上展示了几十公里的测试路径上的收敛。
translated by 谷歌翻译
视觉地位识别(VPR)通常关注本地化室外图像。但是,本地化包含部分户外场景的室内场景对于各种应用来说可能具有很大的值。在本文中,我们介绍了内部视觉地点识别(IOVPR),一个任务,旨在通过Windows可见的户外场景本地化图像。对于此任务,我们介绍了新的大型数据集Amsterdam-XXXL,在阿姆斯特丹拍摄的图像,由640万全景街头视图图像和1000个用户生成的室内查询组成。此外,我们介绍了一个新的培训协议,内部数据增强,以适应视觉地点识别方法,以便展示内外视觉识别的潜力。我们经验展示了我们提出的数据增强方案的优势,较小的规模,同时展示了现有方法的大规模数据集的难度。通过这项新任务,我们旨在鼓励为IOVPR制定方法。数据集和代码可用于HTTPS://github.com/saibr/iovpr的研究目的
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译