如今,无线通信正在迅速重塑整个行业。特别是,移动边缘计算(MEC)是一种用于工业互联网(IIOT)的促成技术,它使强大的计算/存储基础架构更靠近移动终端,从而大大降低了响应延迟。为了获得在网络边缘积极缓存的好处,对最终设备之间的受欢迎程度的精确知识至关重要。但是,在许多IIOT场景中,内容流行的内容流行以及数据私人关系的复杂性质对其获取构成了艰巨的挑战。在本文中,我们建议针对MEC启用的IIOT提供无监督和保护隐私的普及预测框架。引入了本地和全球流行的概念,并将每个用户的随时间变化为无模型的马尔可夫链。在此基础上,提出了一种新颖的无监督的复发性联合学习(URFL)算法,以预测分布式的流行,同时实现隐私保护和无监督的培训。仿真表明,提出的框架可以根据降低的根平方误差提高预测准确性,高达$ 60.5 \%-68.7 \%$。此外,避免了手动标签和违反用户数据隐私的行为。
translated by 谷歌翻译
移动边缘计算(MEC)是一个突出的计算范例,它扩展了无线通信的应用领域。由于用户设备和MEC服务器的能力的限制,边缘缓存(EC)优化对于有效利用启用MEC的无线网络中的高速利用。然而,内容普及空间和时间的动态和复杂性以及用户的隐私保护对EC优化构成了重大挑战。在本文中,提出了一种隐私保留的分布式深度确定性政策梯度(P2D3PG)算法,以最大化MEC网络中设备的高速缓存命中率。具体而言,我们认为内容流行度是动态,复杂和不可观察的事实,并制定了在隐私保存的限制下作为分布式问题的设备的高速缓存命中速率的最大化。特别是,我们将分布式优化转换为分布式的无模型马尔可夫决策过程问题,然后介绍一种隐私保留的联合学习方法,用于普及预测。随后,基于分布式增强学学习开发了P2D3PG算法以解决分布式问题。仿真结果表明,在保护用户隐私的同时通过基线方法提高EC击中率的提出方法的优越性。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
在本文中,我们研究了启用高速雾无线电访问网络(F-RAN)中的内容受欢迎程度预测问题。为了以高准确性和低复杂性预测内容的流行,我们提出了基于高斯流程的回归器,以模拟内容请求模式。首先,我们提出的模型捕获了内容特征和受欢迎程度之间的关系。然后,我们利用贝叶斯学习来训练模型参数,这对于过度拟合非常可靠。但是,贝叶斯方法通常无法找到后验分布的闭合形式表达。为了解决此问题,我们采用随机方差降低梯度哈密顿蒙特卡洛(SVRG-HMC)方法来近似后验分布。为了利用其他FOG接入点(F-AP)的计算资源并减少开销的通信,我们提出了一个量化的联合学习(FL)框架与贝叶斯学习相结合。量化的联合贝叶斯学习框架允许每个F-AP在量化和编码后将梯度发送到云服务器。它可以有效地实现预测准确性和通信间接费用之间的权衡。仿真结果表明,我们提出的政策的绩效优于现有政策。
translated by 谷歌翻译
通信技术和互联网的最新进展与人工智能(AI)启用了智能医疗保健。传统上,由于现代医疗保健网络的高性性和日益增长的数据隐私问题,AI技术需要集中式数据收集和处理,这可能在现实的医疗环境中可能是不可行的。作为一个新兴的分布式协作AI范例,通过协调多个客户(例如,医院)来执行AI培训而不共享原始数据,对智能医疗保健特别有吸引力。因此,我们对智能医疗保健的使用提供了全面的调查。首先,我们在智能医疗保健中展示了近期进程,动机和使用FL的要求。然后讨论了近期智能医疗保健的FL设计,从资源感知FL,安全和隐私感知到激励FL和个性化FL。随后,我们对关键医疗领域的FL新兴应用提供了最先进的综述,包括健康数据管理,远程健康监测,医学成像和Covid-19检测。分析了几个最近基于智能医疗保健项目,并突出了从调查中学到的关键经验教训。最后,我们讨论了智能医疗保健未来研究的有趣研究挑战和可能的指示。
translated by 谷歌翻译
In recent years, the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks. Such challenges can be potentially overcome by integrating communication, computing, caching, and control (i4C) technologies. In this survey, we first give a snapshot of different aspects of the i4C, comprising background, motivation, leading technological enablers, potential applications, and use cases. Next, we describe different models of communication, computing, caching, and control (4C) to lay the foundation of the integration approach. We review current state-of-the-art research efforts related to the i4C, focusing on recent trends of both conventional and artificial intelligence (AI)-based integration approaches. We also highlight the need for intelligence in resources integration. Then, we discuss integration of sensing and communication (ISAC) and classify the integration approaches into various classes. Finally, we propose open challenges and present future research directions for beyond 5G networks, such as 6G.
translated by 谷歌翻译
互联网连接系统的指数增长产生了许多挑战,例如频谱短缺问题,需要有效的频谱共享(SS)解决方案。复杂和动态的SS系统可以接触不同的潜在安全性和隐私问题,需要保护机制是自适应,可靠和可扩展的。基于机器学习(ML)的方法经常提议解决这些问题。在本文中,我们对最近的基于ML的SS方法,最关键的安全问题和相应的防御机制提供了全面的调查。特别是,我们详细说明了用于提高SS通信系统的性能的最先进的方法,包括基于ML基于ML的基于的数据库辅助SS网络,ML基于基于的数据库辅助SS网络,包括基于ML的数据库辅助的SS网络,基于ML的LTE-U网络,基于ML的环境反向散射网络和其他基于ML的SS解决方案。我们还从物理层和基于ML算法的相应防御策略的安全问题,包括主要用户仿真(PUE)攻击,频谱感测数据伪造(SSDF)攻击,干扰攻击,窃听攻击和隐私问题。最后,还给出了对ML基于ML的开放挑战的广泛讨论。这种全面的审查旨在为探索新出现的ML的潜力提供越来越复杂的SS及其安全问题,提供基础和促进未来的研究。
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译
随着网络技术的快速发展和网络设备的快速增长,数据吞吐量也大大增加。为了解决蜂窝网络中回程瓶颈的问题并满足人们对延迟的要求,基于预测的结果,网络体系结构等网络体系结构旨在主动将有限的流行内容保持在网络边缘。同时,内容(例如,深度神经网络模型,与Wikipedia类似知识库)和用户之间的相互作用可以视为动态二分图。在本文中,为了最大程度地提高缓存命中率,我们利用有效的动态图神经网络(DGNN)共同学习嵌入了两部分图中的结构和时间模式。此外,为了更深入地了解不断发展的图表中的动态,我们提出了一个基于信息时代(AOI)的注意机制,以提取有价值的历史信息,同时避免消息陈旧的问题。结合了上述预测模型,我们还开发了一种缓存选择算法,以根据预测结果做出缓存决策。广泛的结果表明,与两个现实世界数据集中的其他最先进的方案相比,我们的模型可以获得更高的预测准确性。命中率的结果进一步验证了基于我们提出的模型而不是其他传统方式的缓存政策的优势。
translated by 谷歌翻译
联合学习(FL)已成为工业物联网(IIOT)网络中数字双胞胎的必不可少的技术。但是,由于FL的主/奴隶结构,抵制主聚合器的单点失败以及恶意IIOT设备的攻击是非常具有挑战性的,同时保证了模型收敛速度和准确性。最近,区块链已进入FL系统,将范式转换为分散的方式,从而进一步提高了系统的安全性和学习可靠性。不幸的是,由于资源消耗庞大,交易量有限和高度沟通复杂性,区块链系统的传统共识机制和架构几乎无法处理大规模的FL任务并在IIT设备上运行。为了解决这些问题,本文提出了一个两层区块链驱动的FL系统,称为Chainfl,该系统将IIOT网络分为多个碎片,作为限制信息交换的标准层,并采用直接的无循环图(DAG) - 基于主链作为主链层,以实现平行和异步的横断面验证。此外,FL程序是定制的,以与区块链深入集成,并提出了修改的DAG共识机制来减轻由异常模型引起的失真。为了提供概念验证的实施和评估,部署了基于HyperLeDger面料和基于自发DAG的Mainchain的多个子链。广泛的实验结果表明,我们提出的链条系统以可接受和快速的训练效率(最高14%)和更强的鲁棒性(最多3次)优于现有的主要FL系统。
translated by 谷歌翻译
联邦学习(FL)变得流行,并在训练大型机器学习(ML)模型的情况下表现出很大的潜力,而不会使所有者的原始数据曝光。在FL中,数据所有者可以根据其本地数据培训ML模型,并且仅将模型更新发送到模型更新,而不是原始数据到模型所有者进行聚合。为了提高模型准确性和培训完成时间的学习绩效,招募足够的参与者至关重要。同时,数据所有者是理性的,可能不愿意由于资源消耗而参与协作学习过程。为了解决这些问题,最近有各种作品旨在激励数据业主贡献其资源。在本文中,我们为文献中提出的经济和游戏理论方法提供了全面的审查,以设计刺激数据业主参加流程培训过程的各种计划。特别是,我们首先在激励机制设计中常用的佛罗里达州的基础和背景,经济理论。然后,我们审查博弈理论和经济方法应用于FL的激励机制的应用。最后,我们突出了一些开放的问题和未来关于FL激励机制设计的研究方向。
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
随着物联网,AI和ML/DL算法的出现,数据驱动的医疗应用已成为一种有前途的工具,用于从医学数据设计可靠且可扩展的诊断和预后模型。近年来,这引起了从学术界到工业的广泛关注。这无疑改善了医疗保健提供的质量。但是,由于这些基于AI的医疗应用程序在满足严格的安全性,隐私和服务标准(例如低延迟)方面的困难,因此仍然采用较差。此外,医疗数据通常是分散的和私人的,这使得在人群之间产生强大的结果具有挑战性。联邦学习(FL)的最新发展使得以分布式方式训练复杂的机器学习模型成为可能。因此,FL已成为一个积极的研究领域,尤其是以分散的方式处理网络边缘的医疗数据,以保护隐私和安全问题。为此,本次调查论文重点介绍了数据共享是重大负担的医疗应用中FL技术的当前和未来。它还审查并讨论了当前的研究趋势及其设计可靠和可扩展模型的结果。我们概述了FL将军的统计问题,设备挑战,安全性,隐私问题及其在医疗领域的潜力。此外,我们的研究还集中在医疗应用上,我们重点介绍了全球癌症的负担以及有效利用FL来开发计算机辅助诊断工具来解决这些诊断工具。我们希望这篇评论是一个检查站,以彻底的方式阐明现有的最新最新作品,并为该领域提供开放的问题和未来的研究指示。
translated by 谷歌翻译
联合学习(FL)是标准集中学习范式的最吸引人的替代方案之一,允许异质的设备集训练机器学习模型而无需共享其原始数据。但是,FL需要中央服务器来协调学习过程,从而引入潜在的可扩展性和安全性问题。在文献中,已经提出了诸如八卦联合学习(GFL)和支持区块链的联合学习(BFL)之类的无服务器的方法来减轻这些问题。在这项工作中,我们提出了这三种技术的完整概述,该技术根据整体性能指标进行比较,包括模型准确性,时间复杂性,交流开销,收敛时间和能源消耗。广泛的模拟活动允许进行定量分析。特别是,GFL能够节省18%的训练时间,68%的能源和51%的数据相对于CFL解决方案,但无法达到CFL的准确性水平。另一方面,BFL代表了一个可行的解决方案,用于以更高级别的安全性实施分散的学习,以额外的能源使用和数据共享为代价。最后,我们确定了两个分散的联合学习实施的开放问题,并就该新研究领域的潜在扩展和可能的研究方向提供见解。
translated by 谷歌翻译
由于机器学习(ML)模型变得越来越复杂,其中一个中央挑战是它们在规模的部署,使得公司和组织可以通过人工智能(AI)创造价值。 ML中的新兴范式是一种联合方法,其中学习模型部分地将其交付给一组异构剂,允许代理与自己的数据一起培训模型。然而,模型的估值问题,以及数据/模型的协作培训和交易的激励问题,在文献中获得了有限的待遇。本文提出了一种在基于信任区块基网络上交易的ML模型交易的新生态系统。买方可以获得ML市场的兴趣模型,兴趣的卖家将本地计算花在他们的数据上,以增强该模型的质量。在这样做时,考虑了本地数据与训练型型号的质量之间的比例关系,并且通过分布式数据福价(DSV)估计了销售课程中的训练中的数据的估值。同时,通过分布式分区技术(DLT)提供整个交易过程的可信度。对拟议方法的广泛实验评估显示出具有竞争力的运行时间绩效,在参与者的激励方面下降了15 \%。
translated by 谷歌翻译
通过参与大规模联合学习(FL)优化的设备的异构性质的激励,我们专注于由区块链(BC)技术赋予的异步服务器的FL解决方案。与主要采用的FL方法相比,假设同步操作,我们提倡一个异步方法,由此,模型聚合作为客户端提交本地更新。异步设置与具有异构客户端的实际大规模设置中的联合优化思路非常适合。因此,它可能导致通信开销和空闲时段的效率提高。为了评估启用了BC启用的FL的学习完成延迟,我们提供了基于批量服务队列理论的分析模型。此外,我们提供仿真结果以评估同步和异步机制的性能。涉及BC启用的流量的重要方面,例如网络大小,链路容量或用户要求,并分析并分析。随着我们的结果表明,同步设置导致比异步案例更高的预测精度。然而,异步联合优化在许多情况下提供了更低的延迟,从而在处理大数据集时成为一种吸引力的FL解决方案,严重的时序约束(例如,近实时应用)或高度不同的训练数据。
translated by 谷歌翻译