对比方法导致了最近的自我监督表示学习(SSL)的表现激增。诸如BYOL或SIMSIAM之类的最新方法据称将这些对比方法提炼为它们的本质,消除了钟声和哨子,包括负面示例,这些示例不影响下游性能。这些“非对比度”方法的工作非常出色,而无需使用负面因素,即使全球最低限度的崩溃都在淡化。我们通过经验分析了这些非对抗性方法,发现Simsiam对数据集和模型大小非常敏感。特别是,如果模型相对于数据集大小而言太小,则SIMSIAM表示会经历部分维度崩溃。我们提出了一个度量标准来测量这种崩溃的程度,并表明它可以用于预测下游任务性能,而无需任何微调或标签。我们进一步分析建筑设计选择及其对下游性能的影响。最后,我们证明,转移到持续的学习设置充当正规化器并防止崩溃,并且在Imagenet上使用Resnet-18,连续和多上述训练之间的混合物可以提高线性探针精度多达18个百分点。
translated by 谷歌翻译
We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While state-of-the art methods rely on negative pairs, BYOL achieves a new state of the art without them. BYOL reaches 74.3% top-1 classification accuracy on ImageNet using a linear evaluation with a ResNet-50 architecture and 79.6% with a larger ResNet. We show that BYOL performs on par or better than the current state of the art on both transfer and semi-supervised benchmarks. Our implementation and pretrained models are given on GitHub. 3 * Equal contribution; the order of first authors was randomly selected.
translated by 谷歌翻译
当自我监督的模型已经显示出比在规模上未标记的数据训练的情况下的监督对方的可比视觉表现。然而,它们的功效在持续的学习(CL)场景中灾难性地减少,其中数据被顺序地向模型呈现给模型。在本文中,我们表明,通过添加将表示的当前状态映射到其过去状态,可以通过添加预测的网络来无缝地转换为CL的蒸馏机制。这使我们能够制定一个持续自我监督的视觉表示的框架,学习(i)显着提高了学习象征的质量,(ii)与若干最先进的自我监督目标兼容(III)几乎没有近似参数调整。我们通过在各种CL设置中培训六种受欢迎的自我监督模型来证明我们的方法的有效性。
translated by 谷歌翻译
We introduce Bootstrap Your Own Latent (BYOL), a new approach to selfsupervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While state-of-the art methods rely on negative pairs, BYOL achieves a new state of the art without them. BYOL reaches 74.3% top-1 classification accuracy on ImageNet using a linear evaluation with a ResNet-50 architecture and 79.6% with a larger ResNet. We show that BYOL performs on par or better than the current state of the art on both transfer and semi-supervised benchmarks. Our implementation and pretrained models are given on GitHub. 3 * Equal contribution; the order of first authors was randomly selected. 3
translated by 谷歌翻译
最近在自我监督学习中的最先进的框架最近表明,与传统的CNN型号相比,基于变压器的模型可以导致性能提升。繁荣以最大化图像的两个视图的相互信息,现有的作品对最终陈述具有对比损失。在我们的工作中,我们通过通过对比损失允许中间表示从最终层学习来进一步利用这一点,这可以最大化原始目标的上限和两层之间的相互信息。我们的方法,自蒸馏自我监督学习(SDSSL),胜过竞争基础(SIMCLR,BYOL和MOCO V3)使用各种任务和数据集。在线性评估和K-NN协议中,SDSSL不仅导致最终层的性能优异,而且在大多数下层中也是如此。此外,正负对准用于解释如何更有效地形成表示。代码将可用。
translated by 谷歌翻译
特征回归是将大型神经网络模型蒸馏到较小的功能回归。我们表明,随着网络架构的简单变化,回归可能会优于自我监督模型的知识蒸馏更复杂的最先进方法。令人惊讶的是,即使仅在蒸馏过程中仅使用并且在下游任务中丢弃时,将多层的Perceptron头部添加到CNN骨架上是有益的。因此,更深的非线性投影可以使用在不改变推理架构和时间的情况下准确地模仿老师。此外,我们利用独立的投影头来同时蒸馏多个教师网络。我们还发现,使用与教师和学生网络的输入相同的弱增强图像辅助蒸馏。Imagenet DataSet上的实验证明了各种自我监督蒸馏环境中提出的变化的功效。
translated by 谷歌翻译
本文研究了两种技术,用于开发有效的自我监督视觉变压器(ESVIT)进行视觉表示学习。首先,我们通过一项全面的实证研究表明,具有稀疏自我生产的多阶段体系结构可以显着降低建模的复杂性,但具有失去捕获图像区域之间细粒度对应关系的能力的成本。其次,我们提出了一项新的区域匹配训练任务,该任务使模型可以捕获细粒的区域依赖性,因此显着提高了学习视觉表示的质量。我们的结果表明,ESVIT在ImageNet线性探针评估上结合两种技术,在ImageNet线性探针评估中获得了81.3%的TOP-1,优于先前的艺术,其较高吞吐量的顺序幅度约为较高。当转移到下游线性分类任务时,ESVIT在18个数据集中的17个中优于其受监督的对方。代码和模型可公开可用:https://github.com/microsoft/esvit
translated by 谷歌翻译
自我监督方法的下游精度与在训练过程中解决的代理任务以及从中提取的梯度的质量紧密相关。更丰富,更有意义的梯度更新是允许自我监督的方法以更有效的方式学习的关键。在典型的自我验证框架中,两个增强图像的表示在全球层面是连贯的。尽管如此,将本地线索纳入代理任务可能是有益的,并提高了下游任务的模型准确性。这导致了一个双重目标,一方面,全球代表之间的连贯性是强大的,另一方面,在本地代表之间的一致性得到了强大的一致性。不幸的是,两组局部代表之间的确切对应映射并不存在,这使得将局部代表从一个增强到另一个不平凡的任务匹配。我们建议利用输入图像中的空间信息获得几何匹配,并根据基于相似性匹配的几何方法与以前的方法进行比较。我们的研究表明,不仅1)几何匹配的表现优于低数据表格中的基于相似性的匹配,而且还有2)与没有局部自我验证的香草基线相比,基于相似性的匹配在低数据方面受到了极大的伤害。该代码将在接受后发布。
translated by 谷歌翻译
Siamese networks have become a common structure in various recent models for unsupervised visual representation learning. These models maximize the similarity between two augmentations of one image, subject to certain conditions for avoiding collapsing solutions. In this paper, we report surprising empirical results that simple Siamese networks can learn meaningful representations even using none of the following: (i) negative sample pairs, (ii) large batches, (iii) momentum encoders. Our experiments show that collapsing solutions do exist for the loss and structure, but a stop-gradient operation plays an essential role in preventing collapsing. We provide a hypothesis on the implication of stop-gradient, and further show proof-of-concept experiments verifying it. Our "SimSiam" method achieves competitive results on ImageNet and downstream tasks. We hope this simple baseline will motivate people to rethink the roles of Siamese architectures for unsupervised representation learning. Code will be made available.
translated by 谷歌翻译
指数移动平均值(EMA或动量)被广泛用于现代自学学习(SSL)方法,例如MOCO,以提高性能。我们证明,这种动量也可以插入无动量的SSL框架(例如SIMCLR),以提高性能。尽管它广泛用作现代SSL框架中的基本组成部分,但动量造成的好处尚未得到充分理解。我们发现它的成功至少可以部分归因于稳定性效应。在第一次尝试中,我们分析了EMA如何影响编码器的每个部分,并揭示了编码器输入附近的部分起着微不足道的作用,而后者则具有更大的影响。通过监测编码器中每个块的输出的总体损失的梯度,我们观察到,最终层在反向传播过程中倾向于比其他层的波动大得多,即稳定性较小。有趣的是,我们表明,使用EMA到SSL编码器的最后一部分,即投影仪,而不是整个深层网络编码器可以提供可比或可比性的性能。我们提出的仅投影仪的动量有助于维持EMA的好处,但避免了双向计算。
translated by 谷歌翻译
This paper does not describe a novel method. Instead, it studies a straightforward, incremental, yet must-know baseline given the recent progress in computer vision: selfsupervised learning for Vision Transformers (ViT). While the training recipes for standard convolutional networks have been highly mature and robust, the recipes for ViT are yet to be built, especially in the self-supervised scenarios where training becomes more challenging. In this work, we go back to basics and investigate the effects of several fundamental components for training self-supervised ViT. We observe that instability is a major issue that degrades accuracy, and it can be hidden by apparently good results. We reveal that these results are indeed partial failure, and they can be improved when training is made more stable. We benchmark ViT results in MoCo v3 and several other selfsupervised frameworks, with ablations in various aspects. We discuss the currently positive evidence as well as challenges and open questions. We hope that this work will provide useful data points and experience for future research.
translated by 谷歌翻译
我们对自我监督,监督或半监督设置的代表学习感兴趣。在应用自我监督学习的平均移位思想的事先工作,通过拉动查询图像来概括拜尔的想法,不仅更接近其其他增强,而且还可以到其他增强的最近邻居(NNS)。我们认为,学习可以从选择远处与查询相关的邻居选择遥远的邻居。因此,我们建议通过约束最近邻居的搜索空间来概括MSF算法。我们显示我们的方法在SSL设置中优于MSF,当约束使用不同的图像时,并且当约束确保NNS具有与查询相同的伪标签时,在半监控设置中优于培训资源的半监控设置中的爪子。
translated by 谷歌翻译
自我监督学习(SSL)已取得了有希望的下游表现。但是,当面临现实世界应用程序中的各种资源预算时,将一一一个尺寸的多个网络预算到多个网络的巨大计算负担。在本文中,我们提出了基于歧视性SSL的可靠预处理网络(DSPNET),可以立即训练,然后缩小到各种大小的多个子网络,每个尺寸都可以忠实地学习良好的表示,并可以作为良好的初始化,以良好的初始化。具有各种资源预算的下游任务。具体而言,我们通过优雅地集成SSL和知识蒸馏,将微小网络的思想扩展到判别性SSL范式。我们在图像网上与网络与线性评估和半监督评估方案的一个单独预处理的网络表现出可比性或改进的性能,同时降低了较大的培训成本。预处理的模型还可以很好地推广到下游检测和分割任务。代码将公开。
translated by 谷歌翻译
最近的自我监督学习方法能够学习高质量的图像表示,并通过监督方法关闭差距。但是,这些方法无法逐步获取新的知识 - 事实上,它们实际上主要仅用为具有IID数据的预训练阶段。在这项工作中,我们在没有额外的记忆或重放的情况下调查持续学习制度的自我监督方法。为防止忘记以前的知识,我们提出了功能正规化的使用。我们将表明,朴素的功能正则化,也称为特征蒸馏,导致可塑性的低可塑性,因此严重限制了连续的学习性能。为了解决这个问题,我们提出了预测的功能正则化,其中一个单独的投影网络确保新学习的特征空间保留了先前的特征空间的信息,同时允许学习新功能。这使我们可以防止在保持学习者的可塑性时忘记。针对应用于自我监督的其他增量学习方法的评估表明我们的方法在不同场景和多个数据集中获得竞争性能。
translated by 谷歌翻译
许多最近的自我监督学习方法在图像分类和其他任务上表现出了令人印象深刻的表现。已经使用了一种令人困惑的多种技术,并不总是清楚地了解其收益的原因,尤其是在组合使用时。在这里,我们将图像的嵌入视为点粒子,并将模型优化视为该粒子系统上的动态过程。我们的动态模型结合了类似图像的吸引力,避免局部崩溃的局部分散力以及实现颗粒的全球均匀分布的全局分散力。动态透视图突出了使用延迟参数图像嵌入(a la byol)以及同一图像的多个视图的优点。它还使用纯动态的局部分散力(布朗运动),该分散力比其他方法显示出改善的性能,并且不需要其他粒子坐标的知识。该方法称为MSBREG,代表(i)多视质心损失,它施加了吸引力的力来将不同的图像视图嵌入到其质心上,(ii)奇异值损失,将粒子系统推向空间均匀的密度( iii)布朗扩散损失。我们评估MSBREG在ImageNet上的下游分类性能以及转移学习任务,包括细粒度分类,多类对象分类,对象检测和实例分段。此外,我们还表明,将我们的正则化术语应用于其他方法,进一步改善了其性能并通过防止模式崩溃来稳定训练。
translated by 谷歌翻译
Despite significant advances, the performance of state-of-the-art continual learning approaches hinges on the unrealistic scenario of fully labeled data. In this paper, we tackle this challenge and propose an approach for continual semi-supervised learning -- a setting where not all the data samples are labeled. An underlying issue in this scenario is the model forgetting representations of unlabeled data and overfitting the labeled ones. We leverage the power of nearest-neighbor classifiers to non-linearly partition the feature space and learn a strong representation for the current task, as well as distill relevant information from previous tasks. We perform a thorough experimental evaluation and show that our method outperforms all the existing approaches by large margins, setting a strong state of the art on the continual semi-supervised learning paradigm. For example, on CIFAR100 we surpass several others even when using at least 30 times less supervision (0.8% vs. 25% of annotations).
translated by 谷歌翻译
学习概括不见于没有人类监督的有效视觉表现是一个基本问题,以便将机器学习施加到各种各样的任务。最近,分别是SIMCLR和BYOL的两个自我监督方法,对比学习和潜在自动启动的家庭取得了重大进展。在这项工作中,我们假设向这些算法添加显式信息压缩产生更好,更强大的表示。我们通过开发与条件熵瓶颈(CEB)目标兼容的SIMCLR和BYOL配方来验证这一点,允许我们衡量并控制学习的表示中的压缩量,并观察它们对下游任务的影响。此外,我们探讨了Lipschitz连续性和压缩之间的关系,显示了我们学习的编码器的嘴唇峰常数上的易触摸下限。由于Lipschitz连续性与稳健性密切相关,这为什么压缩模型更加强大提供了新的解释。我们的实验证实,向SIMCLR和BYOL添加压缩显着提高了线性评估精度和模型鲁棒性,跨各种域移位。特别是,Byol的压缩版本与Reset-50的ImageNet上的76.0%的线性评估精度达到了76.0%的直线评价精度,并使用Reset-50 2x的78.8%。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
Masked image modelling (e.g., Masked AutoEncoder) and contrastive learning (e.g., Momentum Contrast) have shown impressive performance on unsupervised visual representation learning. This work presents Masked Contrastive Representation Learning (MACRL) for self-supervised visual pre-training. In particular, MACRL leverages the effectiveness of both masked image modelling and contrastive learning. We adopt an asymmetric setting for the siamese network (i.e., encoder-decoder structure in both branches), where one branch with higher mask ratio and stronger data augmentation, while the other adopts weaker data corruptions. We optimize a contrastive learning objective based on the learned features from the encoder in both branches. Furthermore, we minimize the $L_1$ reconstruction loss according to the decoders' outputs. In our experiments, MACRL presents superior results on various vision benchmarks, including CIFAR-10, CIFAR-100, Tiny-ImageNet, and two other ImageNet subsets. Our framework provides unified insights on self-supervised visual pre-training and future research.
translated by 谷歌翻译