In this technical report, we present our solutions to the Traffic4cast 2022 core challenge and extended challenge. In this competition, the participants are required to predict the traffic states for the future 15-minute based on the vehicle counter data in the previous hour. Compared to other competitions in the same series, this year focuses on the prediction of different data sources and sparse vertex-to-edge generalization. To address these issues, we introduce the Transposed Variational Auto-encoder (TVAE) model to reconstruct the missing data and Graph Attention Networks (GAT) to strengthen the correlations between learned representations. We further apply feature selection to learn traffic patterns from diverse but easily available data. Our solutions have ranked first in both challenges on the final leaderboard. The source code is available at \url{https://github.com/Daftstone/Traffic4cast}
translated by 谷歌翻译
准确的交通状况预测为车辆环境协调和交通管制任务提供了坚实的基础。由于道路网络数据在空间分布中的复杂性以及深度学习方法的多样性,有效定义流量数据并充分捕获数据中复杂的空间非线性特征变得具有挑战性。本文将两种分层图池方法应用于流量预测任务,以减少图形信息冗余。首先,本文验证了流量预测任务中层次图池方法的有效性。分层图合并方法与其他基线在预测性能上形成鲜明对比。其次,应用了两种主流分层图池方法,节点群集池和节点下降池,用于分析流量预测中的优势和弱点。最后,对于上述图神经网络,本文比较了不同图网络输入对流量预测准确性的预测效应。分析和汇总定义图网络的有效方法。
translated by 谷歌翻译
近年来,图形神经网络(GNN)与复发性神经网络(RNN)的变体相结合,在时空预测任务中达到了最先进的性能。对于流量预测,GNN模型使用道路网络的图形结构来解释链接和节点之间的空间相关性。最近的解决方案要么基于复杂的图形操作或避免预定义的图。本文提出了一种新的序列结构,以使用具有稀疏体系结构的GNN-RNN细胞在多个抽象的抽象上提取时空相关性,以减少训练时间与更复杂的设计相比。通过多个编码器编码相同的输入序列,并随着编码层的增量增加,使网络能够通过多级抽象来学习一般和详细的信息。我们进一步介绍了来自加拿大蒙特利尔的街道细分市场流量数据的新基准数据集。与高速公路不同,城市路段是循环的,其特征是复杂的空间依赖性。与基线方法相比,一小时预测的实验结果和我们的MSLTD街道级段数据集对我们的模型提高了7%以上,同时将计算资源要求提高了一半以上竞争方法。
translated by 谷歌翻译
Traffic state prediction in a transportation network is paramount for effective traffic operations and management, as well as informed user and system-level decision-making. However, long-term traffic prediction (beyond 30 minutes into the future) remains challenging in current research. In this work, we integrate the spatio-temporal dependencies in the transportation network from network modeling, together with the graph convolutional network (GCN) and graph attention network (GAT). To further tackle the dramatic computation and memory cost caused by the giant model size (i.e., number of weights) caused by multiple cascaded layers, we propose sparse training to mitigate the training cost, while preserving the prediction accuracy. It is a process of training using a fixed number of nonzero weights in each layer in each iteration. We consider the problem of long-term traffic speed forecasting for a real large-scale transportation network data from the California Department of Transportation (Caltrans) Performance Measurement System (PeMS). Experimental results show that the proposed GCN-STGT and GAT-STGT models achieve low prediction errors on short-, mid- and long-term prediction horizons, of 15, 30 and 45 minutes in duration, respectively. Using our sparse training, we could train from scratch with high sparsity (e.g., up to 90%), equivalent to 10 times floating point operations per second (FLOPs) reduction on computational cost using the same epochs as dense training, and arrive at a model with very small accuracy loss compared with the original dense training
translated by 谷歌翻译
如今,智能高速公路交通网络在现代运输基础设施中发挥了重要作用。可以在高速公路交通网络中促进可变速度限制(VSL)系统,以提供有用的动态速度限制信息,供驾驶员增强安全性。这种系统通常以稳定的咨询速度设计,因此当驾驶员遵循速度时,流量可以顺利移动,而不是在充满差距并放慢拥堵时加速。但是,当驾驶员离开由VSL系统管理的道路网络时,对车辆行为的研究几乎没有引起关注,VSL系统可能在很大程度上涉及意外的加速,减速和频繁的车道变化,从而造成随后的高速公路道路使用者的混乱。在本文中,由于驾驶员在VSL系统之后的高速公路交通网络上的车道变更意图,我们将重点关注交通流量异常。更具体地说,我们将图形建模应用于流行的移动模拟器Sumo在路段级别生成的交通流数据。然后,我们使用拟议的Lane-GNN方案(注意时间表卷积神经网络)评估车道变化检测的性能,并将其性能与时间卷积神经网络(TCNN)作为我们的基线进行比较。我们的实验结果表明,在某些假设下,提出的巷道GNN可以在90秒内以99.42%的精度检测驾驶员的车道变化意图。最后,将一些解释方法应用于受过训练的模型,以进一步说明我们的发现。
translated by 谷歌翻译
交通速度预测是许多有价值应用程序的关键,由于其各种影响因素,它也是一项具有挑战性的任务。最近的工作试图通过各种混合模型获得更多信息,从而提高了预测准确性。但是,这些方法的空间信息采集方案存在两级分化问题。建模很简单,但包含很少的空间信息,或者建模是完整的,但缺乏灵活性。为了基于确保灵活性引入更多空间信息,本文提出了IRNET(可转让的交叉点重建网络)。首先,本文将相交重建为与相同结构的虚拟交集,从而简化了道路网络的拓扑结构。然后,将空间信息细分为交叉信息和交通流向的序列信息,并通过各种模型获得时空特征。第三,一种自我发项机制用于融合时空特征以进行预测。在与基线的比较实验中,不仅预测效应,而且转移性能具有明显的优势。
translated by 谷歌翻译
在本文中,我们提出了STC-GEF,这是一种新型的时空跨平台图嵌入城市交通流量预测的融合方法。我们已经设计了基于图形卷积网络(GCN)的空间嵌入模块,以在交通流数据中提取复杂的空间特征。此外,为了捕获各个时间间隔的交通流数据之间的时间依赖性,我们设计了一个基于复发神经网络的时间嵌入模块。基于观察到不同的运输平台Trip数据(例如出租车,Uber和Lyft)可以关联的观察结果,我们设计了一种有效的融合机制,该机制结合了来自不同运输平台的旅行数据,并进一步将它们用于跨平台交通流量。预测(例如,用于出租车交通流量预测的出租车和乘车共享平台)。我们根据纽约市(NYC)的黄色出租车和乘车共享(LYFT)的现实世界旅行数据进行了广泛的现实实验研究,并验证了STC-GEF在融合不同运输平台中的准确性和有效性数据并预测流量流。
translated by 谷歌翻译
道路网络和轨迹表示学习对于交通系统至关重要,因为学习的表示形式可以直接用于各种下游任务(例如,交通速度推理和旅行时间估计)。但是,大多数现有方法仅在同一规模内对比,即分别处理道路网络和轨迹,这些方法忽略了有价值的相互关系。在本文中,我们旨在提出一个统一的框架,该框架共同学习道路网络和轨迹表示端到端。我们为公路对比度和轨迹 - 轨迹对比度分别设计了特定领域的增强功能,即路段及其上下文邻居和轨迹分别替换和丢弃了替代方案。最重要的是,我们进一步引入了路面跨尺度对比,与最大化总互信息桥接了这两个尺度。与仅在形成对比的图形及其归属节点上的现有跨尺度对比度学习方法不同,路段和轨迹之间的对比是通过新颖的正面抽样和适应性加权策略精心量身定制的。我们基于两个实际数据集进行了审慎的实验,这些数据集具有四个下游任务,证明了性能和有效性的提高。该代码可在https://github.com/mzy94/jclrnt上找到。
translated by 谷歌翻译
Accurate spatial-temporal traffic flow forecasting is essential for helping traffic managers to take control measures and drivers to choose the optimal travel routes. Recently, graph convolutional networks (GCNs) have been widely used in traffic flow prediction owing to their powerful ability to capture spatial-temporal dependencies. The design of the spatial-temporal graph adjacency matrix is a key to the success of GCNs, and it is still an open question. This paper proposes reconstructing the binary adjacency matrix via tensor decomposition, and a traffic flow forecasting method is proposed. First, we reformulate the spatial-temporal fusion graph adjacency matrix into a three-way adjacency tensor. Then, we reconstructed the adjacency tensor via Tucker decomposition, wherein more informative and global spatial-temporal dependencies are encoded. Finally, a Spatial-temporal Synchronous Graph Convolutional module for localized spatial-temporal correlations learning and a Dilated Convolution module for global correlations learning are assembled to aggregate and learn the comprehensive spatial-temporal dependencies of the road network. Experimental results on four open-access datasets demonstrate that the proposed model outperforms state-of-the-art approaches in terms of the prediction performance and computational cost.
translated by 谷歌翻译
交通流量预测是智能运输系统的重要组成部分,从而受到了研究人员的关注。但是,交通道路之间的复杂空间和时间依赖性使交通流量的预测具有挑战性。现有方法通常是基于图形神经网络,使用交通网络的预定义空间邻接图来建模空间依赖性,而忽略了道路节点之间关系的动态相关性。此外,他们通常使用独立的时空组件来捕获时空依赖性,并且不会有效地对全局时空依赖性进行建模。本文提出了一个新的时空因果图形注意网络(STCGAT),以解决上述挑战。在STCGAT中,我们使用一种节点嵌入方法,可以在每个时间步骤中自适应生成空间邻接子图,而无需先验地理知识和对不同时间步骤动态生成图的拓扑的精细颗粒建模。同时,我们提出了一个有效的因果时间相关成分,其中包含节点自适应学习,图形卷积以及局部和全局因果关系卷积模块,以共同学习局部和全局时空依赖性。在四个真正的大型流量数据集上进行的广泛实验表明,我们的模型始终优于所有基线模型。
translated by 谷歌翻译
建模城市环境中的网络级交通流量如何变化对于运输,公共安全和城市规划中的决策有用。交通流量系统可以视为一个动态过程,随着时间的推移,状态之间(例如,每个道路段的交通量)之间过渡。在现实世界中的流量系统中,诸如交通信号控制或可逆车道更改之类的交通操作动作,该系统的状态受历史状态和交通操作的行动的影响。在本文中,我们考虑了在现实世界中建模网络级交通流量的问题,在现实世界中,可用数据稀疏(即仅观察到交通系统的一部分)。我们提出了Dtignn,该方法可以预测稀疏数据的网络级流量流。 Dtignn将交通系统建模为受交通信号影响的动态图,学习以运输的基本过渡方程为基础的过渡模型,并预测未来的交通状态在此过程中归类。通过全面的实验,我们证明了我们的方法优于最先进的方法,并且可以更好地支持运输中的决策。
translated by 谷歌翻译
使用图形卷积网络(GCN)构建时空网络已成为预测交通信号的最流行方法之一。但是,当使用GCN进行交通速度预测时,常规方法通常将传感器之间的关系作为均匀图,并使用传感器累积的数据来学习邻接矩阵。但是,传感器之间的空间相关性并未指定为一个,而是从各种观点方面定义不同。为此,我们旨在研究流量信号数据中固有的异质特征,以以各种方式学习传感器之间的隐藏关系。具体而言,我们设计了一种方法来通过将传感器之间的空间关系分为静态和动态模块来构造每个模块的异质图。我们提出了一个基于网络分散注意力的基于异质性 - 感知图形卷积网络(HAGCN)方法,该方法通过在异质图中考虑每个通道的重要性来汇总相邻节点的隐藏状态。实际流量数据集的实验结果验证了所提出的方法的有效性,比现有模型取得了6.35%的改善,并实现了最先进的预测性能。
translated by 谷歌翻译
Accurate short-term traffic prediction plays a pivotal role in various smart mobility operation and management systems. Currently, most of the state-of-the-art prediction models are based on graph neural networks (GNNs), and the required training samples are proportional to the size of the traffic network. In many cities, the available amount of traffic data is substantially below the minimum requirement due to the data collection expense. It is still an open question to develop traffic prediction models with a small size of training data on large-scale networks. We notice that the traffic states of a node for the near future only depend on the traffic states of its localized neighborhoods, which can be represented using the graph relational inductive biases. In view of this, this paper develops a graph network (GN)-based deep learning model LocaleGN that depicts the traffic dynamics using localized data aggregating and updating functions, as well as the node-wise recurrent neural networks. LocaleGN is a light-weighted model designed for training on few samples without over-fitting, and hence it can solve the problem of few-sample traffic prediction. The proposed model is examined on predicting both traffic speed and flow with six datasets, and the experimental results demonstrate that LocaleGN outperforms existing state-of-the-art baseline models. It is also demonstrated that the learned knowledge from LocaleGN can be transferred across cities. The research outcomes can help to develop light-weighted traffic prediction systems, especially for cities lacking historically archived traffic data.
translated by 谷歌翻译
准确的交通预测对于智能城市实现交通控制,路线计划和流动检测至关重要。尽管目前提出了许多时空方法,但这些方法在同步捕获流量数据的时空依赖性方面缺陷。此外,大多数方法忽略了随着流量数据的变化而产生的道路网络节点之间的动态变化相关性。我们建议基于神经网络的时空交互式动态图卷积网络(STIDGCN),以应对上述流量预测的挑战。具体而言,我们提出了一个交互式动态图卷积结构,该结构将序列划分为间隔,并通过交互式学习策略同步捕获流量数据的时空依赖性。交互式学习策略使StidGCN有效地预测。我们还提出了一个新颖的动态图卷积模块,以捕获由图生成器和融合图卷积组成的流量网络中动态变化的相关性。动态图卷积模块可以使用输入流量数据和预定义的图形结构来生成图形结构。然后将其与定义的自适应邻接矩阵融合,以生成动态邻接矩阵,该矩阵填充了预定义的图形结构,并模拟了道路网络中节点之间的动态关联的产生。在四个现实世界流量流数据集上进行的广泛实验表明,StidGCN的表现优于最先进的基线。
translated by 谷歌翻译
准确的交通预测是使流量管理等流量管理的关键要素,例如重新路由汽车减少道路拥堵或通过动态速度限制来调节流量以保持稳定的流量。表示流量数据的一种方法是以时间更改的热图可视化流量的属性(例如速度和音量)的形式。在最近的作品中,U-NET模型在热图预测的交通预测上显示了SOTA性能。我们建议将U-NET体系结构与图层相结合,该层面可以改善与香草U-NET相比,将空间概括到看不见的道路网络。特别是,我们专门将现有的图形操作对地理拓扑敏感,并概括合并和升级操作以适用于图形。
translated by 谷歌翻译
Traffic forecasting is an important application of spatiotemporal series prediction. Among different methods, graph neural networks have achieved so far the most promising results, learning relations between graph nodes then becomes a crucial task. However, improvement space is very limited when these relations are learned in a node-to-node manner. The challenge stems from (1) obscure temporal dependencies between different stations, (2) difficulties in defining variables beyond the node level, and (3) no ready-made method to validate the learned relations. To confront these challenges, we define legitimate traffic causal variables to discover the causal relation inside the traffic network, which is carefully checked with statistic tools and case analysis. We then present a novel model named Graph Spatial-Temporal Network Based on Causal Insight (GT-CausIn), where prior learned causal information is integrated with graph diffusion layers and temporal convolutional network (TCN) layers. Experiments are carried out on two real-world traffic datasets: PEMS-BAY and METR-LA, which show that GT-CausIn significantly outperforms the state-of-the-art models on mid-term and long-term prediction.
translated by 谷歌翻译
交通预测在智能交通系统中很重要,有利于交通安全,但由于现实世界交通系统中的复杂和动态的时空依赖性,这是非常具有挑战性的。先前的方法使用预定义或学习的静态图来提取空间相关性。但是,基于静态图形的方法无法挖掘交通网络的演变。研究人员随后为每次切片生成动态图形以反映空间相关性的变化,但它们遵循独立建模的时空依赖性的范例,忽略了串行空间影响。在本文中,我们提出了一种新的基于跨时动态图形的深度学习模型,名为CDGNet,用于交通预测。该模型能够通过利用横行动态图来有效地捕获每个时切片和其历史时片之间的串联空间依赖性。同时,我们设计了稀疏横行动态图的浇注机制,符合现实世界中的稀疏空间相关性。此外,我们提出了一种新颖的编码器解码器架构,用于结合基于交叉时间动态图形的GCN,用于多步行量预测。三个现实世界公共交通数据集的实验结果表明CDGNET优于最先进的基线。我们还提供了一种定性研究来分析我们建筑的有效性。
translated by 谷歌翻译
最近的研究表明,在将图神经网络应用于多元时间序列预测中,其中时间序列的相互作用被描述为图形结构,并且变量表示为图节点。沿着这一行,现有方法通常假定确定图神经网络的聚合方式的图形结构(或邻接矩阵)是根据定义或自学来固定的。但是,变量的相互作用在现实情况下可以是动态的和进化的。此外,如果在不同的时间尺度上观察到时间序列的相互作用序列的相互作用大不相同。为了使图形神经网络具有灵活而实用的图结构,在本文中,我们研究了如何对时间序列的进化和多尺度相互作用进行建模。特别是,我们首先提供与扩张的卷积配合的层次图结构,以捕获时间序列之间的比例特定相关性。然后,以经常性的方式构建了一系列邻接矩阵,以表示每一层的不断发展的相关性。此外,提供了一个统一的神经网络来集成上述组件以获得最终预测。这样,我们可以同时捕获成对的相关性和时间依赖性。最后,对单步和多步骤预测任务的实验证明了我们方法比最新方法的优越性。
translated by 谷歌翻译
人类对象相互作用(HOI)识别的关键是推断人与物体之间的关系。最近,该图像的人类对象相互作用(HOI)检测取得了重大进展。但是,仍然有改善视频HOI检测性能的空间。现有的一阶段方法使用精心设计的端到端网络来检测视频段并直接预测交互。它使网络的模型学习和进一步的优化更加复杂。本文介绍了空间解析和动态时间池(SPDTP)网络,该网络将整个视频作为时空图作为人类和对象节点作为输入。与现有方法不同,我们提出的网络通过显式空间解析预测交互式和非相互作用对之间的差异,然后执行交互识别。此外,我们提出了一个可学习且可区分的动态时间模块(DTM),以强调视频的关键帧并抑制冗余帧。此外,实验结果表明,SPDTP可以更多地关注主动的人类对象对和有效的密钥帧。总体而言,我们在CAD-1220数据集和某些ELSE数据集上实现了最先进的性能。
translated by 谷歌翻译
流量预测在智能运输系统中交通控制和调度任务的实现中起着重要作用。随着数据源的多元化,合理地使用丰富的流量数据来对流量流中复杂的时空依赖性和非线性特征进行建模是智能运输系统的关键挑战。此外,清楚地评估从不同数据中提取的时空特征的重要性成为一个挑战。提出了双层 - 空间时间特征提取和评估(DL -STFEE)模型。 DL-STFEE的下层是时空特征提取层。流量数据中的空间和时间特征是通过多画图卷积和注意机制提取的,并生成了空间和时间特征的不同组合。 DL-STFEE的上层是时空特征评估层。通过高维自我注意力发项机制产生的注意力评分矩阵,空间特征组合被融合和评估,以便获得不同组合对预测效应的影响。在实际的流量数据集上进行了三组实验,以表明DL-STFEE可以有效地捕获时空特征并评估不同时空特征组合的重要性。
translated by 谷歌翻译