尽管使用StyleGan进行语义操纵的最新进展,但对真实面孔的语义编辑仍然具有挑战性。 $ W $空间与$ W $+空间之间的差距需要重建质量与编辑质量之间的不良权衡。为了解决这个问题,我们建议通过用基于注意的变压器代替Stylegan映射网络中的完全连接的层来扩展潜在空间。这种简单有效的技术将上述两个空间整合在一起,并将它们转换为一个名为$ W $ ++的新的潜在空间。我们的修改后的Stylegan保持了原始StyleGan的最新一代质量,并具有中等程度的多样性。但更重要的是,提议的$ W $ ++空间在重建质量和编辑质量方面都取得了卓越的性能。尽管有这些显着优势,但我们的$ W $ ++空间支持现有的反转算法和编辑方法,仅由于其与$ w/w $+空间的结构相似性,因此仅可忽略不计的修改。 FFHQ数据集上的广泛实验证明,我们提出的$ W $ ++空间显然比以前的$ w/w $+空间更可取。该代码可在https://github.com/anonsubm2021/transstylegan上公开提供。
translated by 谷歌翻译
现在,使用最近的生成对抗网络(GAN)可以使用高现实主义的不受约束图像产生。但是,用给定的一组属性生成图像非常具有挑战性。最近的方法使用基于样式的GAN模型来执行图像编辑,通过利用发电机层中存在的语义层次结构。我们提出了一些基于潜在的属性操纵和编辑(火焰),这是一个简单而有效的框架,可通过潜在空间操纵执行高度控制的图像编辑。具体而言,我们估计了控制生成图像中语义属性的潜在空间(预训练样式的)中的线性方向。与以前的方法相反,这些方法依赖于大规模属性标记的数据集或属性分类器,而火焰则使用一些策划的图像对的最小监督来估算删除的编辑指示。火焰可以在保留身份的同时,在各种图像集上同时进行高精度和顺序编辑。此外,我们提出了一项新颖的属性样式操纵任务,以生成各种样式的眼镜和头发等属性。我们首先编码相同身份的一组合成图像,但在潜在空间中具有不同的属性样式,以估计属性样式歧管。从该歧管中采样新的潜在将导致生成图像中的新属性样式。我们提出了一种新颖的抽样方法,以从歧管中采样潜在的样品,使我们能够生成各种属性样式,而不是训练集中存在的样式。火焰可以以分离的方式生成多种属性样式。我们通过广泛的定性和定量比较来说明火焰与先前的图像编辑方法相对于先前的图像编辑方法的卓越性能。火焰在多个数据集(例如汽车和教堂)上也很好地概括了。
translated by 谷歌翻译
Recent 3D-aware GANs rely on volumetric rendering techniques to disentangle the pose and appearance of objects, de facto generating entire 3D volumes rather than single-view 2D images from a latent code. Complex image editing tasks can be performed in standard 2D-based GANs (e.g., StyleGAN models) as manipulation of latent dimensions. However, to the best of our knowledge, similar properties have only been partially explored for 3D-aware GAN models. This work aims to fill this gap by showing the limitations of existing methods and proposing LatentSwap3D, a model-agnostic approach designed to enable attribute editing in the latent space of pre-trained 3D-aware GANs. We first identify the most relevant dimensions in the latent space of the model controlling the targeted attribute by relying on the feature importance ranking of a random forest classifier. Then, to apply the transformation, we swap the top-K most relevant latent dimensions of the image being edited with an image exhibiting the desired attribute. Despite its simplicity, LatentSwap3D provides remarkable semantic edits in a disentangled manner and outperforms alternative approaches both qualitatively and quantitatively. We demonstrate our semantic edit approach on various 3D-aware generative models such as pi-GAN, GIRAFFE, StyleSDF, MVCGAN, EG3D and VolumeGAN, and on diverse datasets, such as FFHQ, AFHQ, Cats, MetFaces, and CompCars. The project page can be found: \url{https://enisimsar.github.io/latentswap3d/}.
translated by 谷歌翻译
Although Generative Adversarial Networks (GANs) have made significant progress in face synthesis, there lacks enough understanding of what GANs have learned in the latent representation to map a random code to a photo-realistic image. In this work, we propose a framework called InterFaceGAN to interpret the disentangled face representation learned by the state-of-the-art GAN models and study the properties of the facial semantics encoded in the latent space. We first find that GANs learn various semantics in some linear subspaces of the latent space. After identifying these subspaces, we can realistically manipulate the corresponding facial attributes without retraining the model. We then conduct a detailed study on the correlation between different semantics and manage to better disentangle them via subspace projection, resulting in more precise control of the attribute manipulation. Besides manipulating the gender, age, expression, and presence of eyeglasses, we can even alter the face pose and fix the artifacts accidentally made by GANs. Furthermore, we perform an in-depth face identity analysis and a layer-wise analysis to evaluate the editing results quantitatively. Finally, we apply our approach to real face editing by employing GAN inversion approaches and explicitly training feed-forward models based on the synthetic data established by InterFaceGAN. Extensive experimental results suggest that learning to synthesize faces spontaneously brings a disentangled and controllable face representation.
translated by 谷歌翻译
Our goal with this survey is to provide an overview of the state of the art deep learning technologies for face generation and editing. We will cover popular latest architectures and discuss key ideas that make them work, such as inversion, latent representation, loss functions, training procedures, editing methods, and cross domain style transfer. We particularly focus on GAN-based architectures that have culminated in the StyleGAN approaches, which allow generation of high-quality face images and offer rich interfaces for controllable semantics editing and preserving photo quality. We aim to provide an entry point into the field for readers that have basic knowledge about the field of deep learning and are looking for an accessible introduction and overview.
translated by 谷歌翻译
Recent work has shown that a variety of semantics emerge in the latent space of Generative Adversarial Networks (GANs) when being trained to synthesize images. However, it is difficult to use these learned semantics for real image editing. A common practice of feeding a real image to a trained GAN generator is to invert it back to a latent code. However, existing inversion methods typically focus on reconstructing the target image by pixel values yet fail to land the inverted code in the semantic domain of the original latent space. As a result, the reconstructed image cannot well support semantic editing through varying the inverted code. To solve this problem, we propose an in-domain GAN inversion approach, which not only faithfully reconstructs the input image but also ensures the inverted code to be semantically meaningful for editing. We first learn a novel domain-guided encoder to project a given image to the native latent space of GANs. We then propose domain-regularized optimization by involving the encoder as a regularizer to fine-tune the code produced by the encoder and better recover the target image. Extensive experiments suggest that our inversion method achieves satisfying real image reconstruction and more importantly facilitates various image editing tasks, significantly outperforming start-of-the-arts. 1
translated by 谷歌翻译
GAN的进展使高分辨率的感性质量形象产生了产生。 stylegans允许通过数学操作对W/W+空间中的潜在样式向量进行数学操作进行引人入胜的属性修改,从而有效调节生成器的丰富层次结构表示。最近,此类操作已被推广到原始StyleGan纸中的属性交换之外,以包括插值。尽管StyleGans有许多重大改进,但仍被认为会产生不自然的图像。生成的图像的质量基于两个假设。 (a)生成器学到的层次表示的丰富性,以及(b)样式空间的线性和平滑度。在这项工作中,我们提出了一个层次的语义正常化程序(HSR),该层次正常化程序将生成器学到的层次表示与大量数据学到的相应的强大功能保持一致。 HSR不仅可以改善发电机的表示,还可以改善潜在风格空间的线性和平滑度,从而导致产生更自然的样式编辑的图像。为了证明线性改善,我们提出了一种新型的度量 - 属性线性评分(ALS)。通过改善感知路径长度(PPL)度量的改善,在不同的标准数据集中平均16.19%的不自然图像的生成显着降低,同时改善了属性编辑任务中属性变化的线性变化。
translated by 谷歌翻译
The introduction of high-quality image generation models, particularly the StyleGAN family, provides a powerful tool to synthesize and manipulate images. However, existing models are built upon high-quality (HQ) data as desired outputs, making them unfit for in-the-wild low-quality (LQ) images, which are common inputs for manipulation. In this work, we bridge this gap by proposing a novel GAN structure that allows for generating images with controllable quality. The network can synthesize various image degradation and restore the sharp image via a quality control code. Our proposed QC-StyleGAN can directly edit LQ images without altering their quality by applying GAN inversion and manipulation techniques. It also provides for free an image restoration solution that can handle various degradations, including noise, blur, compression artifacts, and their mixtures. Finally, we demonstrate numerous other applications such as image degradation synthesis, transfer, and interpolation.
translated by 谷歌翻译
Figure 1: Manipulating various facial attributes through varying the latent codes of a well-trained GAN model. The first column shows the original synthesis from PGGAN [21], while each of the other columns shows the results of manipulating a specific attribute.
translated by 谷歌翻译
We present a novel image inversion framework and a training pipeline to achieve high-fidelity image inversion with high-quality attribute editing. Inverting real images into StyleGAN's latent space is an extensively studied problem, yet the trade-off between the image reconstruction fidelity and image editing quality remains an open challenge. The low-rate latent spaces are limited in their expressiveness power for high-fidelity reconstruction. On the other hand, high-rate latent spaces result in degradation in editing quality. In this work, to achieve high-fidelity inversion, we learn residual features in higher latent codes that lower latent codes were not able to encode. This enables preserving image details in reconstruction. To achieve high-quality editing, we learn how to transform the residual features for adapting to manipulations in latent codes. We train the framework to extract residual features and transform them via a novel architecture pipeline and cycle consistency losses. We run extensive experiments and compare our method with state-of-the-art inversion methods. Qualitative metrics and visual comparisons show significant improvements. Code: https://github.com/hamzapehlivan/StyleRes
translated by 谷歌翻译
尽管在预验证的GAN模型的潜在空间中表现出的编辑能力,但倒置现实世界的图像被陷入困境,即重建不能忠于原始输入。这样做的主要原因是,训练和现实世界数据之间的分布未对准,因此,对于真实图像编辑而言,它不稳定。在本文中,我们提出了一个基于GAN的新型编辑框架,以通过组成分解范式解决室外反转问题。特别是,在构图阶段,我们引入了一个差分激活模块,用于从全局角度\ ie(IE)检测语义变化,这是编辑和未编辑图像的特征之间的相对差距。借助生成的diff-cam掩模,配对的原始图像和编辑图像可以直观地进行粗糙的重建。这样,几乎整体可以生存属性,而这种中间结果的质量仍然受到不可避免的幽灵效果的限制。因此,在分解阶段,我们进一步提出了一个基于GAN的基于GAN的DEGHOSTING网络,用于将最终的精细编辑图像与粗糙重建分开。在定性和定量评估方面,广泛的实验比最新方法具有优势。我们方法的鲁棒性和灵活性在两个属性和多属性操作的方案上也得到了验证。
translated by 谷歌翻译
In this work, we propose TediGAN, a novel framework for multi-modal image generation and manipulation with textual descriptions. The proposed method consists of three components: StyleGAN inversion module, visual-linguistic similarity learning, and instance-level optimization. The inversion module maps real images to the latent space of a well-trained StyleGAN. The visual-linguistic similarity learns the text-image matching by mapping the image and text into a common embedding space. The instancelevel optimization is for identity preservation in manipulation. Our model can produce diverse and high-quality images with an unprecedented resolution at 1024 2 . Using a control mechanism based on style-mixing, our Tedi-GAN inherently supports image synthesis with multi-modal inputs, such as sketches or semantic labels, with or without instance guidance. To facilitate text-guided multimodal synthesis, we propose the Multi-Modal CelebA-HQ, a large-scale dataset consisting of real face images and corresponding semantic segmentation map, sketch, and textual descriptions. Extensive experiments on the introduced dataset demonstrate the superior performance of our proposed method. Code and data are available at https://github.com/weihaox/TediGAN.
translated by 谷歌翻译
In this work, we are dedicated to text-guided image generation and propose a novel framework, i.e., CLIP2GAN, by leveraging CLIP model and StyleGAN. The key idea of our CLIP2GAN is to bridge the output feature embedding space of CLIP and the input latent space of StyleGAN, which is realized by introducing a mapping network. In the training stage, we encode an image with CLIP and map the output feature to a latent code, which is further used to reconstruct the image. In this way, the mapping network is optimized in a self-supervised learning way. In the inference stage, since CLIP can embed both image and text into a shared feature embedding space, we replace CLIP image encoder in the training architecture with CLIP text encoder, while keeping the following mapping network as well as StyleGAN model. As a result, we can flexibly input a text description to generate an image. Moreover, by simply adding mapped text features of an attribute to a mapped CLIP image feature, we can effectively edit the attribute to the image. Extensive experiments demonstrate the superior performance of our proposed CLIP2GAN compared to previous methods.
translated by 谷歌翻译
由于GaN潜在空间的勘探和利用,近年来,现实世界的图像操纵实现了奇妙的进展。 GaN反演是该管道的第一步,旨在忠实地将真实图像映射到潜在代码。不幸的是,大多数现有的GaN反演方法都无法满足下面列出的三个要求中的至少一个:重建质量,可编辑性和快速推断。我们在本研究中提出了一种新的两阶段策略,同时适合所有要求。在第一阶段,我们训练编码器将输入图像映射到StyleGan2 $ \ Mathcal {W} $ - 空间,这被证明具有出色的可编辑性,但重建质量较低。在第二阶段,我们通过利用一系列HyperNetWorks来补充初始阶段的重建能力以在反转期间恢复缺失的信息。这两个步骤互相补充,由于Hypernetwork分支和由于$ \ Mathcal {W} $ - 空间中的反转,因此由于HyperNetwork分支和优异的可编辑性而相互作用。我们的方法完全是基于编码器的,导致极快的推断。关于两个具有挑战性的数据集的广泛实验证明了我们方法的优越性。
translated by 谷歌翻译
随着方法的发展,反转主要分为两个步骤。第一步是图像嵌入,其中编码器或优化过程嵌入图像以获取相应的潜在代码。之后,第二步旨在完善反转和编辑结果,我们将其命名为“结果”。尽管第二步显着提高了忠诚度,但感知和编辑性几乎没有变化,深处取决于第一步中获得的反向潜在代码。因此,一个关键问题是在保留重建保真度的同时获得更好的感知和编辑性的潜在代码。在这项工作中,我们首先指出,这两个特征与合成分布的逆代码的对齐程度(或不对准)有关。然后,我们提出了潜在空间比对反转范式(LSAP),该范式由评估度量和解决方案组成。具体来说,我们引入了归一化样式空间($ \ Mathcal {s^n} $ space)和$ \ Mathcal {s^n} $ cosine距离(SNCD)以测量反转方法的不对准。由于我们提出的SNCD是可区分的,因此可以在基于编码器和基于优化的嵌入方法中进行优化,以执行均匀的解决方案。在各个域中进行的广泛实验表明,SNCD有效地反映了感知和编辑性,并且我们的对齐范式在两个步骤中都归档了最新的。代码可在https://github.com/caopulan/ganinverter上找到。
translated by 谷歌翻译
反转生成对抗网络(GAN)可以使用预训练的发电机来促进广泛的图像编辑任务。现有方法通常采用gan的潜在空间作为反转空间,但观察到空间细节的恢复不足。在这项工作中,我们建议涉及发电机的填充空间,以通过空间信息补充潜在空间。具体来说,我们替换具有某些实例感知系数的卷积层中使用的恒定填充(例如,通常为零)。通过这种方式,可以适当地适当地适应了预训练模型中假定的归纳偏差以适合每个单独的图像。通过学习精心设计的编码器,我们设法在定性和定量上提高了反演质量,超过了现有的替代方案。然后,我们证明了这样的空间扩展几乎不会影响天然甘纳的歧管,因此我们仍然可以重复使用甘斯(Gans)对各种下游应用学到的先验知识。除了在先前的艺术中探讨的编辑任务外,我们的方法还可以进行更灵活的图像操纵,例如对面部轮廓和面部细节的单独控制,并启用一种新颖的编辑方式,用户可以高效地自定义自己的操作。
translated by 谷歌翻译
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images. In order to identify such latent dimensions for image editing, previous methods typically annotate a collection of synthesized samples and train linear classifiers in the latent space. However, they require a clear definition of the target attribute as well as the corresponding manual annotations, limiting their applications in practice. In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner. In particular, we take a closer look into the generation mechanism of GANs and further propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights. With a lightning-fast implementation, our approach is capable of not only finding semantically meaningful dimensions comparably to the state-of-the-art supervised methods, but also resulting in far more versatile concepts across multiple GAN models trained on a wide range of datasets. 1
translated by 谷歌翻译
Figure 1. The proposed pixel2style2pixel framework can be used to solve a wide variety of image-to-image translation tasks. Here we show results of pSp on StyleGAN inversion, multi-modal conditional image synthesis, facial frontalization, inpainting and super-resolution.
translated by 谷歌翻译
由于其语义上的理解和用户友好的可控性,通过三维引导,通过三维引导的面部图像操纵已广泛应用于各种交互式场景。然而,现有的基于3D形式模型的操作方法不可直接适用于域名面,例如非黑色素化绘画,卡通肖像,甚至是动物,主要是由于构建每个模型的强大困难具体面部域。为了克服这一挑战,据我们所知,我们建议使用人为3DMM操纵任意域名的第一种方法。这是通过两个主要步骤实现的:1)从3DMM参数解开映射到潜在的STYLEGO2的潜在空间嵌入,可确保每个语义属性的解除响应和精确的控制; 2)通过实施一致的潜空间嵌入,桥接域差异并使人类3DMM适用于域外面的人类3DMM。实验和比较展示了我们高质量的语义操作方法在各种面部域中的优越性,所有主要3D面部属性可控姿势,表达,形状,反照镜和照明。此外,我们开发了直观的编辑界面,以支持用户友好的控制和即时反馈。我们的项目页面是https://cassiepython.github.io/cddfm3d/index.html
translated by 谷歌翻译