我们提出了一种在视频中跟踪多人的新方法。与雇用2D表示的过去的方法不同,我们专注于使用位于三维空间的人的3D表示。为此,我们开发一种方法,人体网状和外观恢复(HMAR),除了提取人的3D几何形状作为SMPL网格之外,还提取作为网格三角形上的纹理图的外观。这用作对视点和构成更改具有稳健性的外观的3D表示。给定视频剪辑,我们首先使用HMAR提取3D外观,姿势和位置信息来检测对应的边界框。然后将这些嵌入向量发送到变压器,该变压器在序列的持续时间内执行表示的时空聚合。由此产生的表示的相似性用于求解将每个人分配给ROCKET的关联。我们评估我们在Posetrack,MUPOT和AVA数据集中的方法。我们发现3D表示比2D表示更有效,以便在这些设置中跟踪,我们获得最先进的性能。代码和结果可用于:https://brjathu.github.io/t3dp。
translated by 谷歌翻译
在本文中,我们通过预测其未来的3D表示,提出了一种追踪单眼视频中的人员的方法。为实现这一目标,我们首先以强大的方式从一个框架举起人们3D。这一提升包括关于人的3D姿势的信息,他或她在3D空间中的位置,以及3D外观。当我们跟踪一个人时,我们在托管表示中收集3D观察。鉴于我们观察的3D性质,我们为以前的每个属性建立了时间模型。我们使用这些模型来预测Tracklet的未来状态,包括3D位置,3D外观和3D姿势。对于未来的帧,我们以概率的方式计算轨迹的预测状态与单帧观测之间的相似性。使用简单的匈牙利匹配解决了关联,并且匹配用于更新相应的Tracklet。我们评估我们在各种基准和报告最先进的结果上的方法。
translated by 谷歌翻译
Tracking has traditionally been the art of following interest points through space and time. This changed with the rise of powerful deep networks. Nowadays, tracking is dominated by pipelines that perform object detection followed by temporal association, also known as tracking-by-detection. We present a simultaneous detection and tracking algorithm that is simpler, faster, and more accurate than the state of the art. Our tracker, CenterTrack, applies a detection model to a pair of images and detections from the prior frame. Given this minimal input, CenterTrack localizes objects and predicts their associations with the previous frame. That's it. CenterTrack is simple, online (no peeking into the future), and real-time. It achieves 67.8% MOTA on the MOT17 challenge at 22 FPS and 89.4% MOTA on the KITTI tracking benchmark at 15 FPS, setting a new state of the art on both datasets. CenterTrack is easily extended to monocular 3D tracking by regressing additional 3D attributes. Using monocular video input, it achieves 28.3% AMOTA@0.2 on the newly released nuScenes 3D tracking benchmark, substantially outperforming the monocular baseline on this benchmark while running at 28 FPS.
translated by 谷歌翻译
培训视频中人类姿势估计的最先进模型需要具有很难获得的注释的数据集。尽管最近已将变压器用于身体姿势序列建模,但相关方法依靠伪地真相来增强目前有限的培训数据可用于学习此类模型。在本文中,我们介绍了Posebert,Posebert是一个通过掩盖建模对3D运动捕获(MOCAP)数据进行全面训练的变压器模块。它是简单,通用和通用的,因为它可以插入任何基于图像的模型的顶部,以在基于视频的模型中使用时间信息。我们展示了Posebert的变体,不同的输入从3D骨骼关键点到全身或仅仅是手(Mano)的3D参数模型的旋转。由于Posebert培训是任务不可知论的,因此该模型可以应用于姿势细化,未来的姿势预测或运动完成等几个任务。我们的实验结果验证了在各种最新姿势估计方法之上添加Posebert始终提高其性能,而其低计算成本使我们能够在实时演示中使用它,以通过A的机器人手使机器人手通过摄像头。可以在https://github.com/naver/posebert上获得测试代码和型号。
translated by 谷歌翻译
电视节目描述了各种各样的人类行为,并已广泛研究其成为许多应用程序的丰富数据来源的潜力。但是,大多数现有工作都集中在2D识别任务上。在本文中,我们观察到电视节目中有一定的持久性,即对环境和人类的重复,这使得该内容的3D重建成为可能。在这种见解的基础上,我们提出了一种自动方法,该方法在整个电视节目的整个季节中运作,并在3D中汇总信息;我们构建了环境,计算摄像头信息,静态3D场景结构和身体尺度信息的3D模型。然后,我们演示了这些信息如何充当丰富的3D背景,可以指导和改善3D人类姿势和位置在这些环境中的恢复。此外,我们表明,关于人类及其环境的推理在3D中可以实现广泛的下游应用:重新识别,凝视估计,摄影和图像编辑。我们将我们的方法应用于七个标志性电视节目的环境中,并对所提出的系统进行广泛的评估。
translated by 谷歌翻译
From an image of a person in action, we can easily guess the 3D motion of the person in the immediate past and future. This is because we have a mental model of 3D human dynamics that we have acquired from observing visual sequences of humans in motion. We present a framework that can similarly learn a representation of 3D dynamics of humans from video via a simple but effective temporal encoding of image features. At test time, from video, the learned temporal representation give rise to smooth 3D mesh predictions. From a single image, our model can recover the current 3D mesh as well as its 3D past and future motion. Our approach is designed so it can learn from videos with 2D pose annotations in a semi-supervised manner. Though annotated data is always limited, there are millions of videos uploaded daily on the Internet. In this work, we harvest this Internet-scale source of unlabeled data by training our model on unlabeled video with pseudo-ground truth 2D pose obtained from an off-the-shelf 2D pose detector. Our experiments show that adding more videos with pseudo-ground truth 2D pose monotonically improves 3D prediction performance. We evaluate our model, Human Mesh and Motion Recovery (HMMR), on the recent challenging dataset of 3D Poses in the Wild and obtain state-of-the-art performance on the 3D prediction task without any fine-tuning. The project website with video, code, and data can be found at https://akanazawa.github.io/ human_dynamics/.
translated by 谷歌翻译
跟踪视频感兴趣的对象是计算机视觉中最受欢迎和最广泛应用的问题之一。然而,随着年的几年,寒武纪的用例和基准已经将问题分散在多种不同的实验设置中。因此,文献也已经分散,现在社区提出的新方法通常是专门用于仅适合一个特定的设置。要了解在多大程度上,这项专业化是必要的,在这项工作中,我们展示了UnitRack,一个解决方案来解决同一框架内的五个不同任务。 Unitrack由单一和任务不可知的外观模型组成,可以以监督或自我监督的方式学习,以及解决个人任务的多个`“头”,并且不需要培训。我们展示了在该框架内可以解决的大多数跟踪任务,并且可以成功地成功地使用相同的外观模型来获得对针对考虑大多数任务的专业方法具有竞争力的结果。该框架还允许我们分析具有最新自我监督方法获得的外观模型,从而扩展了他们的评估并与更大种类的重要问题进行比较。
translated by 谷歌翻译
将一致的时间标识符分配给视频序列中的多个移动对象是一个具有挑战性的问题。该问题的解决方案将在多个对象跟踪和分段问题中具有立即的分支。我们提出了一种将时间识别任务视为一种时空聚类问题的策略。我们提出了一种使用我们呼叫深度异构的AutoEncoder的卷积和完全连接的AutoEncoder的无监督学习方法,以了解来自分段掩码和检测边界框的歧视特征。我们从预训练的实例分段网络中提取掩码和它们相应的边界框,并使用依赖于任务的不确定性权重培训AutoEncoders以生成共同的潜在功能。然后,我们构建约束图,该图促进满足一组已知时间条件的对象之间的关联。然后将特征向量和约束图提供给kmeans聚类算法,以分离潜像中的相应数据点。我们使用挑战合成和现实世界多对象视频数据集评估我们的方法的性能。我们的结果表明,我们的技术优于几种最先进的方法。
translated by 谷歌翻译
来自RGB视频的多人姿势理解包括三个复杂的任务:姿势估计,跟踪和运动预测。在这三个任务中,姿势估计和跟踪是相关的,跟踪对于运动预测至关重要。大多数现有作品要么专注于单个任务,要么采用级联方法来分别解决每个任务。在本文中,我们提出了狙击手,这是一个框架,以同时进行单个推断,同时进行多人3D姿势估计,跟踪和运动预测。具体而言,我们首先提出了一种可变形的注意机制,以从视频片段中汇总时空信息。基于这种可变形的注意力,学会了视觉变压器来编码从多框架图像中的时空特征,并解码信息性姿势功能以更新多人姿势查询。最后,对这些查询进行了回归,以预测一个正向传球中的多人姿势轨迹和未来动作。在实验中,我们显示了狙击手对三个具有挑战性的公共数据集的有效性,在该数据集中,通用模型竞争对手专门的姿势估计,跟踪和预测的最先进基线。代码可在\ href {https://github.com/jimmyzou/snipper} {https://github.com/jimmyzou/snipper}中获得。
translated by 谷歌翻译
多摄像机跟踪系统在需要高质量跟踪结果的应用中获得普及,例如摩擦结账,因为单眼多物体跟踪(MOT)系统由于闭塞而在杂乱和拥挤的环境中经常失败。通过恢复部分3D信息,多个高度重叠的相机可以显着减轻问题。但是,使用不同的相机设置和背景创建高质量多摄像头跟踪数据集的成本在该域中的数据集比例限制了数据集尺度。在本文中,我们在自动注释系统的帮助下提供了五种不同环境的大型密集标记的多摄像头跟踪数据集。该系统使用重叠和校准的深度和RGB相机来构建高性能3D跟踪器,可自动生成3D跟踪结果。使用摄像机参数将3D跟踪结果投影到每个RGB摄像头视图以创建2D跟踪结果。然后,我们手动检查并更正3D跟踪结果以确保标签质量,比完全手动注释便宜得多。我们使用两个实时多相机跟踪器和具有不同设置的人重新识别(REID)模型进行了广泛的实验。该数据集在杂乱和拥挤的环境中提供了更可靠的多摄像头,多目标跟踪系统的基准。此外,我们的结果表明,在此数据集中调整跟踪器和REID模型显着提高了它们的性能。我们的数据集将在接受这项工作后公开发布。
translated by 谷歌翻译
Figure 1: Given challenging in-the-wild videos, a recent state-of-the-art video-pose-estimation approach [31] (top), fails to produce accurate 3D body poses. To address this, we exploit a large-scale motion-capture dataset to train a motion discriminator using an adversarial approach. Our model (VIBE) (bottom) is able to produce realistic and accurate pose and shape, outperforming previous work on standard benchmarks.
translated by 谷歌翻译
在本文中,我们考虑了同时找到和从单个2D图像中恢复多手的具有挑战性的任务。先前的研究要么关注单手重建,要么以多阶段的方式解决此问题。此外,常规的两阶段管道首先检测到手部区域,然后估计每个裁剪贴片的3D手姿势。为了减少预处理和特征提取中的计算冗余,我们提出了一条简洁但有效的单阶段管道。具体而言,我们为多手重建设计了多头自动编码器结构,每个HEAD网络分别共享相同的功能图并分别输出手动中心,姿势和纹理。此外,我们采用了一个弱监督的计划来减轻昂贵的3D现实世界数据注释的负担。为此,我们提出了一系列通过舞台训练方案优化的损失,其中根据公开可用的单手数据集生成具有2D注释的多手数据集。为了进一步提高弱监督模型的准确性,我们在单手和多个手设置中采用了几个功能一致性约束。具体而言,从本地功能估算的每只手的关键点应与全局功能预测的重新投影点一致。在包括Freihand,HO3D,Interhand 2.6M和RHD在内的公共基准测试的广泛实验表明,我们的方法在弱监督和完全监督的举止中优于基于最先进的模型方法。代码和模型可在{\ url {https://github.com/zijinxuxu/smhr}}上获得。
translated by 谷歌翻译
近年来,多个对象跟踪引起了研究人员的极大兴趣,它已成为计算机视觉中的趋势问题之一,尤其是随着自动驾驶的最新发展。 MOT是针对不同问题的关键视觉任务之一,例如拥挤的场景中的闭塞,相似的外观,小物体检测难度,ID切换等,以应对这些挑战,因为研究人员试图利用变压器的注意力机制,与田径的相互关系,与田径的相互关系,图形卷积神经网络,与暹罗网络不同帧中对象的外观相似性,他们还尝试了基于IOU匹配的CNN网络,使用LSTM的运动预测。为了将这些零散的技术在雨伞下采用,我们研究了过去三年发表的一百多篇论文,并试图提取近代研究人员更关注的技术来解决MOT的问题。我们已经征集了许多应用,可能性以及MOT如何与现实生活有关。我们的评论试图展示研究人员使用过时的技术的不同观点,并为潜在的研究人员提供了一些未来的方向。此外,我们在这篇评论中包括了流行的基准数据集和指标。
translated by 谷歌翻译
最近,视频变压器在视频理解方面取得了巨大成功,超过了CNN性能;然而,现有的视频变换器模型不会明确地模拟对象,尽管对象对于识别操作至关重要。在这项工作中,我们呈现对象区域视频变换器(Orvit),一个\ emph {对象为中心}方法,它与直接包含对象表示的块扩展视频变压器图层。关键的想法是从早期层开始融合以对象形式的表示,并将它们传播到变压器层中,从而影响整个网络的时空表示。我们的orvit块由两个对象级流组成:外观和动态。在外观流中,“对象区域关注”模块在修补程序上应用自我关注和\ emph {对象区域}。以这种方式,Visual对象区域与统一修补程序令牌交互,并通过上下文化对象信息来丰富它们。我们通过单独的“对象 - 动态模块”进一步模型对象动态,捕获轨迹交互,并显示如何集成两个流。我们在四个任务和五个数据集中评估我们的模型:在某事物中的某些问题和几次射击动作识别,以及在AVA上的某些时空动作检测,以及在某种东西上的标准动作识别 - 某种东西 - 东西,潜水48和EPIC-Kitchen100。我们在考虑的所有任务和数据集中展示了强大的性能改进,展示了将对象表示的模型的值集成到变压器体系结构中。对于代码和预用模型,请访问项目页面\ url {https://roeiherz.github.io/orvit/}
translated by 谷歌翻译
To track the 3D locations and trajectories of the other traffic participants at any given time, modern autonomous vehicles are equipped with multiple cameras that cover the vehicle's full surroundings. Yet, camera-based 3D object tracking methods prioritize optimizing the single-camera setup and resort to post-hoc fusion in a multi-camera setup. In this paper, we propose a method for panoramic 3D object tracking, called CC-3DT, that associates and models object trajectories both temporally and across views, and improves the overall tracking consistency. In particular, our method fuses 3D detections from multiple cameras before association, reducing identity switches significantly and improving motion modeling. Our experiments on large-scale driving datasets show that fusion before association leads to a large margin of improvement over post-hoc fusion. We set a new state-of-the-art with 12.6% improvement in average multi-object tracking accuracy (AMOTA) among all camera-based methods on the competitive NuScenes 3D tracking benchmark, outperforming previously published methods by 6.5% in AMOTA with the same 3D detector.
translated by 谷歌翻译
Accurate whole-body multi-person pose estimation and tracking is an important yet challenging topic in computer vision. To capture the subtle actions of humans for complex behavior analysis, whole-body pose estimation including the face, body, hand and foot is essential over conventional body-only pose estimation. In this paper, we present AlphaPose, a system that can perform accurate whole-body pose estimation and tracking jointly while running in realtime. To this end, we propose several new techniques: Symmetric Integral Keypoint Regression (SIKR) for fast and fine localization, Parametric Pose Non-Maximum-Suppression (P-NMS) for eliminating redundant human detections and Pose Aware Identity Embedding for jointly pose estimation and tracking. During training, we resort to Part-Guided Proposal Generator (PGPG) and multi-domain knowledge distillation to further improve the accuracy. Our method is able to localize whole-body keypoints accurately and tracks humans simultaneously given inaccurate bounding boxes and redundant detections. We show a significant improvement over current state-of-the-art methods in both speed and accuracy on COCO-wholebody, COCO, PoseTrack, and our proposed Halpe-FullBody pose estimation dataset. Our model, source codes and dataset are made publicly available at https://github.com/MVIG-SJTU/AlphaPose.
translated by 谷歌翻译
本文旨在解决多个对象跟踪(MOT),这是计算机视觉中的一个重要问题,但由于许多实际问题,尤其是阻塞,因此仍然具有挑战性。确实,我们提出了一种新的实时深度透视图 - 了解多个对象跟踪(DP-MOT)方法,以解决MOT中的闭塞问题。首先提出了一个简单但有效的主题深度估计(SODE),以在2D场景中自动以无监督的方式自动订购检测到的受试者的深度位置。使用SODE的输出,提出了一个新的活动伪3D KALMAN滤波器,即具有动态控制变量的Kalman滤波器的简单但有效的扩展,以动态更新对象的运动。此外,在数据关联步骤中提出了一种新的高阶关联方法,以合并检测到的对象之间的一阶和二阶关系。与标准MOT基准的最新MOT方法相比,提出的方法始终达到最先进的性能。
translated by 谷歌翻译
多目标跟踪(MOT)的典型管道是使用探测器进行对象本地化,并在重新识别(RE-ID)之后进行对象关联。该管道通过对象检测和重新ID的最近进展部分而部分地激励,并且部分地通过现有的跟踪数据集中的偏差激励,其中大多数物体倾向于具有区分外观和RE-ID模型足以建立关联。为了响应这种偏见,我们希望重新强调多目标跟踪的方法也应该在对象外观不充分辨别时起作用。为此,我们提出了一个大型数据集,用于多人跟踪,人类具有相似的外观,多样化的运动和极端关节。由于数据集包含主要组跳舞视频,我们将其命名为“DanceTrack”。我们预计DanceTrack可以提供更好的平台,以开发更多的MOT算法,这些算法依赖于视觉识别并更依赖于运动分析。在我们的数据集上,我们在数据集上基准测试了几个最先进的追踪器,并在与现有基准测试中遵守DanceTrack的显着性能下降。 DataSet,项目代码和竞争服务器播放:\ url {https://github.com/danceTrack}。
translated by 谷歌翻译
多摄像机多对象跟踪目前在计算机视野中引起了注意力,因为它在现实世界应用中的卓越性能,如具有拥挤场景或巨大空间的视频监控。在这项工作中,我们提出了一种基于空间升降的多乳制型配方的数学上优雅的多摄像多对象跟踪方法。我们的模型利用单摄像头跟踪器产生的最先进的TOOTWLET作为提案。由于这些Tracklet可能包含ID-Switch错误,因此我们通过从3D几何投影获得的新型预簇来完善它们。因此,我们派生了更好的跟踪图,没有ID交换机,更精确的数据关联阶段的亲和力成本。然后通过求解全局提升的多乳制型制剂,将轨迹与多摄像机轨迹匹配,该组件包含位于同一相机和相互相机间的Tracklet上的短路和远程时间交互。在Wildtrack DataSet的实验结果是近乎完美的结果,在校园上表现出最先进的追踪器,同时在PETS-09数据集上处于校准状态。我们将在接受纸质时进行我们的实施。
translated by 谷歌翻译
3D多对象跟踪旨在唯一,始终如一地识别所有移动实体。尽管在此设置中提供了丰富的时空信息,但当前的3D跟踪方法主要依赖于抽象的信息和有限的历史记录,例如单帧对象边界框。在这项工作中,我们开发了对交通场景的整体表示,该场景利用了现场演员的空间和时间信息。具体而言,我们通过将跟踪的对象表示为时空点和边界框的序列来重新将跟踪作为时空问题,并在悠久的时间历史上进行重新制定。在每个时间戳上,我们通过对对象历史记录的完整顺序进行的细化来改善跟踪对象的位置和运动估计。通过共同考虑时间和空间,我们的代表自然地编码了基本的物理先验,例如对象持久性和整个时间的一致性。我们的时空跟踪框架在Waymo和Nuscenes基准测试中实现了最先进的性能。
translated by 谷歌翻译