Recovery of true color from underwater images is an ill-posed problem. This is because the wide-band attenuation coefficients for the RGB color channels depend on object range, reflectance, etc. which are difficult to model. Also, there is backscattering due to suspended particles in water. Thus, most existing deep-learning based color restoration methods, which are trained on synthetic underwater datasets, do not perform well on real underwater data. This can be attributed to the fact that synthetic data cannot accurately represent real conditions. To address this issue, we use an image to image translation network to bridge the gap between the synthetic and real domains by translating images from synthetic underwater domain to real underwater domain. Using this multimodal domain adaptation technique, we create a dataset that can capture a diverse array of underwater conditions. We then train a simple but effective CNN based network on our domain adapted dataset to perform color restoration. Code and pre-trained models can be accessed at https://github.com/nehamjain10/TRUDGCR
translated by 谷歌翻译
With the development of convolutional neural networks, hundreds of deep learning based dehazing methods have been proposed. In this paper, we provide a comprehensive survey on supervised, semi-supervised, and unsupervised single image dehazing. We first discuss the physical model, datasets, network modules, loss functions, and evaluation metrics that are commonly used. Then, the main contributions of various dehazing algorithms are categorized and summarized. Further, quantitative and qualitative experiments of various baseline methods are carried out. Finally, the unsolved issues and challenges that can inspire the future research are pointed out. A collection of useful dehazing materials is available at \url{https://github.com/Xiaofeng-life/AwesomeDehazing}.
translated by 谷歌翻译
水下图像由于光吸收,折射率和散射而受到颜色铸造,低对比度和朦胧效果,这些效果降低了高级应用,例如,对象检测和对象跟踪。最新的基于学习的方法证明了水下图像增强的惊人性能,但是,这些作品中的大多数使用合成对数据进行监督学习,并忽略了对现实世界数据的域间隙。为了解决这个问题,我们提出了一个通过内容和样式分离来增强水下图像的域适应框架,不同于水下图像增强的域适应性作品,该框架的目标是最大程度地减少合成和现实世界的潜在差异,我们的目标将编码功能分离为内容和样式潜在的样式,并将潜在的样式与不同的域,即合成,现实世界的水下和清洁域以及潜在空间中的过程域的适应和图像增强。通过潜在的操纵,我们的模型提供了一个用户交互接口,以调整不同的增强级别以进行连续更改。对各种公共水下基准测试的实验表明,所提出的框架能够对水下图像增强的域进行适应性,并在数量和质量方面胜过各种最先进的水下图像增强算法。该型号和源代码将在https://github.com/fordevoted/uiess上找到
translated by 谷歌翻译
Images with haze of different varieties often pose a significant challenge to dehazing. Therefore, guidance by estimates of haze parameters related to the variety would be beneficial and their progressive update jointly with haze reduction will allow effective dehazing. To this end, we propose a multi-network dehazing framework containing novel interdependent dehazing and haze parameter updater networks that operate in a progressive manner. The haze parameters, transmission map and atmospheric light, are first estimated using specific convolutional networks allowing color-cast handling. The estimated parameters are then used to guide our dehazing module, where the estimates are progressively updated by novel convolutional networks. The updating takes place jointly with progressive dehazing by a convolutional network that invokes inter-step dependencies. The joint progressive updating and dehazing gradually modify the haze parameter estimates toward achieving effective dehazing. Through different studies, our dehazing framework is shown to be more effective than image-to-image mapping or predefined haze formation model based dehazing. Our dehazing framework is qualitatively and quantitatively found to outperform the state-of-the-art on synthetic and real-world hazy images of several datasets with varied haze conditions.
translated by 谷歌翻译
Deep learning-based methods have achieved significant performance for image defogging. However, existing methods are mainly developed for land scenes and perform poorly when dealing with overwater foggy images, since overwater scenes typically contain large expanses of sky and water. In this work, we propose a Prior map Guided CycleGAN (PG-CycleGAN) for defogging of images with overwater scenes. To promote the recovery of the objects on water in the image, two loss functions are exploited for the network where a prior map is designed to invert the dark channel and the min-max normalization is used to suppress the sky and emphasize objects. However, due to the unpaired training set, the network may learn an under-constrained domain mapping from foggy to fog-free image, leading to artifacts and loss of details. Thus, we propose an intuitive Upscaling Inception Module (UIM) and a Long-range Residual Coarse-to-fine framework (LRC) to mitigate this issue. Extensive experiments on qualitative and quantitative comparisons demonstrate that the proposed method outperforms the state-of-the-art supervised, semi-supervised, and unsupervised defogging approaches.
translated by 谷歌翻译
基于对抗性学习的图像抑制方法,由于其出色的性能,已经在计算机视觉中进行了广泛的研究。但是,大多数现有方法对实际情况的质量功能有限,因为它们在相同场景的透明和合成的雾化图像上进行了培训。此外,它们在保留鲜艳的色彩和丰富的文本细节方面存在局限性。为了解决这些问题,我们开发了一个新颖的生成对抗网络,称为整体注意力融合对抗网络(HAAN),用于单个图像。 Haan由Fog2FogFogre块和FogFree2Fog块组成。在每个块中,有三个基于学习的模块,即雾除雾,颜色纹理恢复和雾合成,它们相互限制以生成高质量的图像。 Haan旨在通过学习雾图图像之间的整体通道空间特征相关性及其几个派生图像之间的整体通道空间特征相关性来利用纹理和结构信息的自相似性。此外,在雾合成模块中,我们利用大气散射模型来指导它,以通过新颖的天空分割网络专注于大气光优化来提高生成质量。关于合成和现实世界数据集的广泛实验表明,就定量准确性和主观的视觉质量而言,Haan的表现优于最先进的脱落方法。
translated by 谷歌翻译
水下杂质的光吸收和散射导致水下较差的水下成像质量。现有的基于数据驱动的基于数据的水下图像增强(UIE)技术缺乏包含各种水下场景和高保真参考图像的大规模数据集。此外,不同颜色通道和空间区域的不一致衰减不完全考虑提升增强。在这项工作中,我们构建了一个大规模的水下图像(LSUI)数据集,包括5004个图像对,并报告了一个U形变压器网络,其中变压器模型首次引入UIE任务。 U形变压器与通道 - 方面的多尺度特征融合变压器(CMSFFT)模块和空间全局功能建模变压器(SGFMT)模块集成在一起,可使用更多地加强网络对色频道和空间区域的关注严重衰减。同时,为了进一步提高对比度和饱和度,在人类视觉原理之后,设计了组合RGB,实验室和LCH颜色空间的新型损失函数。可用数据集的广泛实验验证了报告的技术的最先进性能,具有超过2dB的优势。
translated by 谷歌翻译
估计漫画图像的深度是具有挑战性的,因为此类图像a)是单眼的。b)缺乏地面深度注释;c)不同艺术风格的不同;d)稀疏而嘈杂。因此,我们使用现成的无监督图像来图像翻译方法将漫画图像转换为自然图像,然后使用注意引导的单眼深度估计器来预测其深度。这使我们能够利用现有自然图像的深度注释来训练深度估计器。此外,我们的模型学会了区分漫画面板中的文本和图像,以减少深度估计中基于文本的人工制品。我们的方法始终优于DCM和EBDTheque图像上所有指标的现有最新方法。最后,我们介绍了一个数据集来评估漫画的深度预测。可以通过https://github.com/ivrl/comicsdepth访问我们的项目网站。
translated by 谷歌翻译
在合成数据集接受培训的基于深度学习的源脱掩护方法已经取得了显着的性能,但由于域移动而引起的真实朦胧图像的性能急剧下降。尽管已经提出了某些域的适应(DA)脱掩护方法,但它们不可避免地需要访问源数据集,以减少源合成和目标真实域之间的差距。为了解决这些问题,我们提出了一种新颖的无源无监督的域适应性(SFUDA)图像去悬式范式,其中只有训练有素的源模型和未标记的目标真实的朦胧数据集。具体而言,我们设计了域表示标准化(DRN)模块,以使真实朦胧域特征的表示与合成域的特征相匹配以弥合间隙。借助我们的插件DRN模块,未标记的真实朦胧图像可以调整现有训练有素的源网络。此外,还应用了无监督的损失来指导DRN模块的学习,该模块包括频率损失和物理先验损失。频率损失提供了结构和样式的约束,而先前的损失探讨了无雾图像的固有统计属性。现有的源脱去模型配备了我们的DRN模块和无监督的损失,能够脱光未标记的真实朦胧图像。在多个基层上进行的广泛实验证明了我们方法在视觉和定量上的有效性和优越性。
translated by 谷歌翻译
我们提出了一种增强的多尺度网络,被称为GriddehazeNet +,用于单图像脱水。所提出的去吸收方法不依赖于大气散射模型(ASM),并提供为什么不一定执行该模型提供的尺寸减少的原因。 Griddehazenet +由三个模块组成:预处理,骨干和后处理。与手工选定的预处理方法产生的那些导出的输入相比,可训练的预处理模块可以生成具有更好分集和更相关的功能的学习输入。骨干模块实现了两种主要增强功能的多尺度估计:1)一种新颖的网格结构,有效地通过不同尺度的密集连接来减轻瓶颈问题; 2)一种空间通道注意力块,可以通过巩固脱水相关特征来促进自适应融合。后处理模块有助于减少最终输出中的伪像。由于域移位,在合成数据上培训的模型可能在真实数据上概括。为了解决这个问题,我们塑造了合成数据的分布以匹配真实数据的分布,并使用所产生的翻译数据来到Finetune我们的网络。我们还提出了一种新的任务内部知识转移机制,可以记住和利用综合域知识,以协助学习过程对翻译数据。实验结果表明,所提出的方法优于几种合成脱色数据集的最先进,并在FineTuning之后实现了现实世界朦胧图像的优越性。
translated by 谷歌翻译
基于深度学习的低光图像增强方法通常需要巨大的配对训练数据,这对于在现实世界的场景中捕获是不切实际的。最近,已经探索了无监督的方法来消除对成对训练数据的依赖。然而,由于没有前衣,它们在不同的现实情景中表现得不稳定。为了解决这个问题,我们提出了一种基于先前(HEP)的有效预期直方图均衡的无监督的低光图像增强方法。我们的作品受到了有趣的观察,即直方图均衡增强图像的特征图和地面真理是相似的。具体而言,我们制定了HEP,提供了丰富的纹理和亮度信息。嵌入一​​个亮度模块(LUM),它有助于将低光图像分解为照明和反射率图,并且反射率图可以被视为恢复的图像。然而,基于Retinex理论的推导揭示了反射率图被噪声污染。我们介绍了一个噪声解剖学模块(NDM),以解除反射率图中的噪声和内容,具有不配对清洁图像的可靠帮助。通过直方图均衡的先前和噪声解剖,我们的方法可以恢复更精细的细节,更有能力抑制现实世界低光场景中的噪声。广泛的实验表明,我们的方法对最先进的无监督的低光增强算法有利地表现出甚至与最先进的监督算法匹配。
translated by 谷歌翻译
由于波长依赖性的光衰减,折射和散射,水下图像通常遭受颜色变形和模糊的细节。然而,由于具有未变形图像的数量有限数量的图像作为参考,培训用于各种降解类型的深度增强模型非常困难。为了提高数据驱动方法的性能,必须建立更有效的学习机制,使得富裕监督来自有限培训的示例资源的信息。在本文中,我们提出了一种新的水下图像增强网络,称为Sguie-net,其中我们将语义信息引入了共享常见语义区域的不同图像的高级指导。因此,我们提出了语义区域 - 明智的增强模块,以感知不同语义区域从多个尺度的劣化,并将其送回从其原始比例提取的全局注意功能。该策略有助于实现不同的语义对象的强大和视觉上令人愉快的增强功能,这应该由于对差异化增强的语义信息的指导应该。更重要的是,对于在训练样本分布中不常见的那些劣化类型,指导根据其语义相关性与已经良好的学习类型连接。对公共数据集的广泛实验和我们拟议的数据集展示了Sguie-Net的令人印象深刻的表现。代码和建议的数据集可用于:https://trentqq.github.io/sguie-net.html
translated by 谷歌翻译
在低灯条件下捕获的图像遭受低可视性和各种成像伪影,例如真实噪音。现有的监督启示算法需要大量的像素对齐的训练图像对,这很难在实践中准备。虽然弱监督或无人监督的方法可以缓解这些挑战,但不使用配对的训练图像,由于缺乏相应的监督,一些现实世界的文物不可避免地被错误地放大。在本文中,而不是使用完美的对齐图像进行培训,我们创造性地使用未对准的现实世界图像作为指导,这很容易收集。具体地,我们提出了一个交叉图像解剖线程(CIDN),以分别提取来自低/常光图像的交叉图像亮度和图像特定内容特征。基于此,CIDN可以同时校正特征域中的亮度和抑制图像伪像,其在很大程度上将鲁棒性增加到像素偏移。此外,我们收集了一个新的低光图像增强数据集,包括具有现实世界腐败的未对准培训图像。实验结果表明,我们的模型在新建议的数据集和其他流行的低光数据集中实现了最先进的表演。
translated by 谷歌翻译
近年来,面部语义指导(包括面部地标,面部热图和面部解析图)和面部生成对抗网络(GAN)近年来已广泛用于盲面修复(BFR)。尽管现有的BFR方法在普通案例中取得了良好的性能,但这些解决方案在面对严重降解和姿势变化的图像时具有有限的弹性(例如,在现实世界情景中看起来右,左看,笑等)。在这项工作中,我们提出了一个精心设计的盲人面部修复网络,具有生成性面部先验。所提出的网络主要由非对称编解码器和stylegan2先验网络组成。在非对称编解码器中,我们采用混合的多路残留块(MMRB)来逐渐提取输入图像的弱纹理特征,从而可以更好地保留原始面部特征并避免过多的幻想。 MMRB也可以在其他网络中插入插件。此外,多亏了StyleGAN2模型的富裕和多样化的面部先验,我们采用了微调的方法来灵活地恢复自然和现实的面部细节。此外,一种新颖的自我监督训练策略是专门设计用于面部修复任务的,以使分配更接近目标并保持训练稳定性。关于合成和现实世界数据集的广泛实验表明,我们的模型在面部恢复和面部超分辨率任务方面取得了卓越的表现。
translated by 谷歌翻译
建筑摄影是一种摄影类型,重点是捕获前景中带有戏剧性照明的建筑物或结构。受图像到图像翻译方法的成功启发,我们旨在为建筑照片执行风格转移。但是,建筑摄影中的特殊构图对这类照片中的样式转移构成了巨大挑战。现有的神经风格转移方法将建筑图像视为单个实体,它将产生与原始建筑的几何特征,产生不切实际的照明,错误的颜色演绎以及可视化伪影,例如幽灵,外观失真或颜色不匹配。在本文中,我们专门针对建筑摄影的神经风格转移方法。我们的方法解决了两个分支神经网络中建筑照片中前景和背景的组成,该神经网络分别考虑了前景和背景的样式转移。我们的方法包括一个分割模块,基于学习的图像到图像翻译模块和图像混合优化模块。我们使用了一天中不同的魔术时代捕获的不受限制的户外建筑照片的新数据集培训了图像到图像的翻译神经网络,利用其他语义信息,以更好地匹配和几何形状保存。我们的实验表明,我们的方法可以在前景和背景上产生逼真的照明和颜色演绎,并且在定量和定性上都优于一般图像到图像转换和任意样式转移基线。我们的代码和数据可在https://github.com/hkust-vgd/architectural_style_transfer上获得。
translated by 谷歌翻译
在水下活动期间获得的图像遭受了水的环境特性,例如浊度和衰减。这些现象会导致颜色失真,模糊和对比度减少。另外,不规则的环境光分布会导致色道不平衡和具有高强度像素的区域。最近的作品与水下图像增强有关,并基于深度学习方法,解决了缺乏生成合成基地真相的配对数据集。在本文中,我们提出了一种基于深度学习的水下图像增强的自我监督学习方法,不需要配对的数据集。提出的方法估计了水下图像中存在的降解。此外,自动编码器重建此图像,并使用估计的降解信息降解其输出图像。因此,该策略在训练阶段的损失函数中用降级版本代替了输出图像。此过程\ textIt {Misleads}学会补偿其他降解的神经网络。结果,重建的图像是输入图像的增强版本。此外,该算法还提出了一个注意模块,以减少通过颜色通道不平衡和异常区域在增强图像中产生的高强度区域。此外,提出的方法不需要基本真实。此外,仅使用真实的水下图像来训练神经网络,结果表明该方法在颜色保存,颜色铸造降低和对比度改进方面的有效性。
translated by 谷歌翻译
One of the main challenges in deep learning-based underwater image enhancement is the limited availability of high-quality training data. Underwater images are difficult to capture and are often of poor quality due to the distortion and loss of colour and contrast in water. This makes it difficult to train supervised deep learning models on large and diverse datasets, which can limit the model's performance. In this paper, we explore an alternative approach to supervised underwater image enhancement. Specifically, we propose a novel unsupervised underwater image enhancement framework that employs a conditional variational autoencoder (cVAE) to train a deep learning model with probabilistic adaptive instance normalization (PAdaIN) and statistically guided multi-colour space stretch that produces realistic underwater images. The resulting framework is composed of a U-Net as a feature extractor and a PAdaIN to encode the uncertainty, which we call UDnet. To improve the visual quality of the images generated by UDnet, we use a statistically guided multi-colour space stretch module that ensures visual consistency with the input image and provides an alternative to training using a ground truth image. The proposed model does not need manual human annotation and can learn with a limited amount of data and achieves state-of-the-art results on underwater images. We evaluated our proposed framework on eight publicly-available datasets. The results show that our proposed framework yields competitive performance compared to other state-of-the-art approaches in quantitative as well as qualitative metrics. Code available at https://github.com/alzayats/UDnet .
translated by 谷歌翻译
Image restoration tasks demand a complex balance between spatial details and high-level contextualized information while recovering images. In this paper, we propose a novel synergistic design that can optimally balance these competing goals. Our main proposal is a multi-stage architecture, that progressively learns restoration functions for the degraded inputs, thereby breaking down the overall recovery process into more manageable steps. Specifically, our model first learns the contextualized features using encoder-decoder architectures and later combines them with a high-resolution branch that retains local information. At each stage, we introduce a novel per-pixel adaptive design that leverages in-situ supervised attention to reweight the local features. A key ingredient in such a multi-stage architecture is the information exchange between different stages. To this end, we propose a twofaceted approach where the information is not only exchanged sequentially from early to late stages, but lateral connections between feature processing blocks also exist to avoid any loss of information. The resulting tightly interlinked multi-stage architecture, named as MPRNet, delivers strong performance gains on ten datasets across a range of tasks including image deraining, deblurring, and denoising. The source code and pre-trained models are available at https://github.com/swz30/MPRNet.
translated by 谷歌翻译
Face Restoration (FR) aims to restore High-Quality (HQ) faces from Low-Quality (LQ) input images, which is a domain-specific image restoration problem in the low-level computer vision area. The early face restoration methods mainly use statistic priors and degradation models, which are difficult to meet the requirements of real-world applications in practice. In recent years, face restoration has witnessed great progress after stepping into the deep learning era. However, there are few works to study deep learning-based face restoration methods systematically. Thus, this paper comprehensively surveys recent advances in deep learning techniques for face restoration. Specifically, we first summarize different problem formulations and analyze the characteristic of the face image. Second, we discuss the challenges of face restoration. Concerning these challenges, we present a comprehensive review of existing FR methods, including prior based methods and deep learning-based methods. Then, we explore developed techniques in the task of FR covering network architectures, loss functions, and benchmark datasets. We also conduct a systematic benchmark evaluation on representative methods. Finally, we discuss future directions, including network designs, metrics, benchmark datasets, applications,etc. We also provide an open-source repository for all the discussed methods, which is available at https://github.com/TaoWangzj/Awesome-Face-Restoration.
translated by 谷歌翻译