Images with haze of different varieties often pose a significant challenge to dehazing. Therefore, guidance by estimates of haze parameters related to the variety would be beneficial and their progressive update jointly with haze reduction will allow effective dehazing. To this end, we propose a multi-network dehazing framework containing novel interdependent dehazing and haze parameter updater networks that operate in a progressive manner. The haze parameters, transmission map and atmospheric light, are first estimated using specific convolutional networks allowing color-cast handling. The estimated parameters are then used to guide our dehazing module, where the estimates are progressively updated by novel convolutional networks. The updating takes place jointly with progressive dehazing by a convolutional network that invokes inter-step dependencies. The joint progressive updating and dehazing gradually modify the haze parameter estimates toward achieving effective dehazing. Through different studies, our dehazing framework is shown to be more effective than image-to-image mapping or predefined haze formation model based dehazing. Our dehazing framework is qualitatively and quantitatively found to outperform the state-of-the-art on synthetic and real-world hazy images of several datasets with varied haze conditions.
translated by 谷歌翻译
Image restoration under hazy weather condition, which is called single image dehazing, has been of significant interest for various computer vision applications. In recent years, deep learning-based methods have achieved success. However, existing image dehazing methods typically neglect the hierarchy of features in the neural network and fail to exploit their relationships fully. To this end, we propose an effective image dehazing method named Hierarchical Contrastive Dehazing (HCD), which is based on feature fusion and contrastive learning strategies. HCD consists of a hierarchical dehazing network (HDN) and a novel hierarchical contrastive loss (HCL). Specifically, the core design in the HDN is a Hierarchical Interaction Module, which utilizes multi-scale activation to revise the feature responses hierarchically. To cooperate with the training of HDN, we propose HCL which performs contrastive learning on hierarchically paired exemplars, facilitating haze removal. Extensive experiments on public datasets, RESIDE, HazeRD, and DENSE-HAZE, demonstrate that HCD quantitatively outperforms the state-of-the-art methods in terms of PSNR, SSIM and achieves better visual quality.
translated by 谷歌翻译
基于对抗性学习的图像抑制方法,由于其出色的性能,已经在计算机视觉中进行了广泛的研究。但是,大多数现有方法对实际情况的质量功能有限,因为它们在相同场景的透明和合成的雾化图像上进行了培训。此外,它们在保留鲜艳的色彩和丰富的文本细节方面存在局限性。为了解决这些问题,我们开发了一个新颖的生成对抗网络,称为整体注意力融合对抗网络(HAAN),用于单个图像。 Haan由Fog2FogFogre块和FogFree2Fog块组成。在每个块中,有三个基于学习的模块,即雾除雾,颜色纹理恢复和雾合成,它们相互限制以生成高质量的图像。 Haan旨在通过学习雾图图像之间的整体通道空间特征相关性及其几个派生图像之间的整体通道空间特征相关性来利用纹理和结构信息的自相似性。此外,在雾合成模块中,我们利用大气散射模型来指导它,以通过新颖的天空分割网络专注于大气光优化来提高生成质量。关于合成和现实世界数据集的广泛实验表明,就定量准确性和主观的视觉质量而言,Haan的表现优于最先进的脱落方法。
translated by 谷歌翻译
Deep learning-based methods have achieved significant performance for image defogging. However, existing methods are mainly developed for land scenes and perform poorly when dealing with overwater foggy images, since overwater scenes typically contain large expanses of sky and water. In this work, we propose a Prior map Guided CycleGAN (PG-CycleGAN) for defogging of images with overwater scenes. To promote the recovery of the objects on water in the image, two loss functions are exploited for the network where a prior map is designed to invert the dark channel and the min-max normalization is used to suppress the sky and emphasize objects. However, due to the unpaired training set, the network may learn an under-constrained domain mapping from foggy to fog-free image, leading to artifacts and loss of details. Thus, we propose an intuitive Upscaling Inception Module (UIM) and a Long-range Residual Coarse-to-fine framework (LRC) to mitigate this issue. Extensive experiments on qualitative and quantitative comparisons demonstrate that the proposed method outperforms the state-of-the-art supervised, semi-supervised, and unsupervised defogging approaches.
translated by 谷歌翻译
我们提出了一种增强的多尺度网络,被称为GriddehazeNet +,用于单图像脱水。所提出的去吸收方法不依赖于大气散射模型(ASM),并提供为什么不一定执行该模型提供的尺寸减少的原因。 Griddehazenet +由三个模块组成:预处理,骨干和后处理。与手工选定的预处理方法产生的那些导出的输入相比,可训练的预处理模块可以生成具有更好分集和更相关的功能的学习输入。骨干模块实现了两种主要增强功能的多尺度估计:1)一种新颖的网格结构,有效地通过不同尺度的密集连接来减轻瓶颈问题; 2)一种空间通道注意力块,可以通过巩固脱水相关特征来促进自适应融合。后处理模块有助于减少最终输出中的伪像。由于域移位,在合成数据上培训的模型可能在真实数据上概括。为了解决这个问题,我们塑造了合成数据的分布以匹配真实数据的分布,并使用所产生的翻译数据来到Finetune我们的网络。我们还提出了一种新的任务内部知识转移机制,可以记住和利用综合域知识,以协助学习过程对翻译数据。实验结果表明,所提出的方法优于几种合成脱色数据集的最先进,并在FineTuning之后实现了现实世界朦胧图像的优越性。
translated by 谷歌翻译
With the development of convolutional neural networks, hundreds of deep learning based dehazing methods have been proposed. In this paper, we provide a comprehensive survey on supervised, semi-supervised, and unsupervised single image dehazing. We first discuss the physical model, datasets, network modules, loss functions, and evaluation metrics that are commonly used. Then, the main contributions of various dehazing algorithms are categorized and summarized. Further, quantitative and qualitative experiments of various baseline methods are carried out. Finally, the unsolved issues and challenges that can inspire the future research are pointed out. A collection of useful dehazing materials is available at \url{https://github.com/Xiaofeng-life/AwesomeDehazing}.
translated by 谷歌翻译
在极低光线条件下捕获图像会对标准相机管道带来重大挑战。图像变得太黑了,太吵了,这使得传统的增强技术几乎不可能申请。最近,基于学习的方法已经为此任务显示了非常有希望的结果,因为它们具有更大的表现力能力来允许提高质量。这些研究中的激励,在本文中,我们的目标是利用爆破摄影来提高性能,并从极端暗的原始图像获得更加锐利和更准确的RGB图像。我们提出的框架的骨干是一种新颖的粗良好网络架构,逐步产生高质量的输出。粗略网络预测了低分辨率,去噪的原始图像,然后将其馈送到精细网络以恢复微尺的细节和逼真的纹理。为了进一步降低噪声水平并提高颜色精度,我们将该网络扩展到置换不变结构,使得它作为输入突发为低光图像,并在特征级别地合并来自多个图像的信息。我们的实验表明,我们的方法通过生产更详细和相当更高的质量的图像来引起比最先进的方法更令人愉悦的结果。
translated by 谷歌翻译
这项工作研究了关节降雨和雾霾清除问题。在现实情况下,雨水和阴霾通常是两个经常共同发生的共同天气现象,可以极大地降低场景图像的清晰度和质量,从而导致视觉应用的性能下降,例如自动驾驶。但是,在场景图像中共同消除雨水和雾霾是艰难而挑战,在那里,阴霾和雨水的存在以及大气光的变化都可以降低现场信息。当前的方法集中在污染部分上,因此忽略了受大气光的变化影响的场景信息的恢复。我们提出了一个新颖的深神经网络,称为不对称双重编码器U-NET(ADU-NET),以应对上述挑战。 ADU-NET既产生污染物残留物,又产生残留的现场,以有效地去除雨水和雾霾,同时保留场景信息的保真度。广泛的实验表明,我们的工作在合成数据和现实世界数据基准(包括RainCityScapes,Bid Rain和Spa-data)的相当大的差距上优于现有的最新方法。例如,我们在RainCityScapes/spa-data上分别将最新的PSNR值提高了2.26/4.57。代码将免费提供给研究社区。
translated by 谷歌翻译
移动设备上的低光成像通常是由于不足的孔径穿过相对较小的孔径而挑战,导致信噪比较低。以前的大多数关于低光图像处理的作品仅关注单个任务,例如照明调整,颜色增强或删除噪声;或在密切依赖于从特定的摄像机模型中收集的长时间曝光图像对的关节照明调整和降解任务上,因此,这些方法在需要摄像机特定的关节增强和恢复的现实环境中不太实用且可推广。为了解决这个问题,在本文中,我们提出了一个低光图像处理框架,该框架可以执行关节照明调整,增强色彩和降解性。考虑到模型特异性数据收集的难度和捕获图像的超高定义,我们设计了两个分支:系数估计分支以及关节增强和denoising分支。系数估计分支在低分辨率空间中起作用,并预测通过双边学习增强的系数,而关节增强和去核分支在全分辨率空间中工作,并逐步执行关节增强和脱氧。与现有方法相反,我们的框架在适应另一个摄像机模型时不需要回忆大量数据,这大大减少了微调我们用于实际使用方法所需的努力。通过广泛的实验,与当前的最新方法相比,我们在现实世界中的低光成像应用中证明了它的巨大潜力。
translated by 谷歌翻译
现有的DERANE方法主要集中于单个输入图像。只有单个输入图像,很难准确检测到雨条,去除雨条并恢复无雨图像。与单个2D图像相比,光场图像(LFI)通过通过元素摄像机记录每个事件射线的方向和位置,嵌入了广泛的3D结构和纹理信息,该镜头已成为计算机中的流行设备视觉和图形研究社区。在本文中,我们提出了一个新颖的网络4D-MGP-SRRNET,以从LFI中删除雨条。我们的方法将大雨LFI的所有子视图作为输入。为了充分利用LFI,我们采用4D卷积层来构建拟议的雨牛排清除网络,以同时处理LFI的所有子视图。在拟议的网络中,提出了带有新颖的多尺度自引导高斯工艺(MSGP)模块的雨水检测模型MGPDNET,以检测输入LFI的所有子视图中的雨条。引入了半监督的学习,以通过对虚拟世界LFI和现实世界中的LFI进行多个尺度上的虚拟世界LFI和现实世界中的LFI来准确检测雨季,这是通过计算现实世界中雨水条纹的伪地面真相。然后,所有减去预测的雨条的子视图都将馈送到4D残差模型中,以估计深度图。最后,所有子视图与相应的雨条和从估计的深度图转换的相应雨条和雾图都馈送到基于对抗性复发性神经网络的雨天LFI恢复模型,以逐步消除雨水条纹并恢复无雨的LFI LFI LFI。 。对合成LFI和现实世界LFI进行的广泛的定量和定性评估证明了我们提出的方法的有效性。
translated by 谷歌翻译
基于模型的单图像去悬算算法恢复了带有尖锐边缘的无雾图像和真实世界的朦胧图像的丰富细节,但以低psnr和ssim值的牺牲来为合成朦胧的图像。数据驱动的图像恢复具有高PSNR和SSIM值的无雾图图像,用于合成朦胧的图像,但对比度低,甚至对于现实世界中的朦胧图像而言,甚至剩下的雾霾。在本文中,通过组合基于模型和数据驱动的方法来引入一种新型的单图像飞行算法。传输图和大气光都是首先通过基于模型的方法估算的,然后通过基于双尺度生成对抗网络(GAN)的方法进行完善。所得算法形成一种神经增强,在相应的数据驱动方法可能不会收敛的同时,该算法的收敛非常快。通过使用估计的传输图和大气光以及KoschmiederLaw来恢复无雾图像。实验结果表明,所提出的算法可以从现实世界和合成的朦胧图像中井除雾霾。
translated by 谷歌翻译
Recovery of true color from underwater images is an ill-posed problem. This is because the wide-band attenuation coefficients for the RGB color channels depend on object range, reflectance, etc. which are difficult to model. Also, there is backscattering due to suspended particles in water. Thus, most existing deep-learning based color restoration methods, which are trained on synthetic underwater datasets, do not perform well on real underwater data. This can be attributed to the fact that synthetic data cannot accurately represent real conditions. To address this issue, we use an image to image translation network to bridge the gap between the synthetic and real domains by translating images from synthetic underwater domain to real underwater domain. Using this multimodal domain adaptation technique, we create a dataset that can capture a diverse array of underwater conditions. We then train a simple but effective CNN based network on our domain adapted dataset to perform color restoration. Code and pre-trained models can be accessed at https://github.com/nehamjain10/TRUDGCR
translated by 谷歌翻译
传统的基于CNNS的脱水模型遭受了两个基本问题:脱水框架(可解释性有限)和卷积层(内容无关,无效地学习远程依赖信息)。在本文中,我们提出了一种新的互补特征增强框架,其中互补特征由几个互补的子任务学习,然后一起用于提高主要任务的性能。新框架的一个突出优势之一是,有目的选择的互补任务可以专注于学习弱依赖性的互补特征,避免重复和无效的网络学习。我们根据这样一个框架设计了一种新的脱瘟网络。具体地,我们选择内在图像分解作为补充任务,其中反射率和阴影预测子任务用于提取色彩和纹理的互补特征。为了有效地聚合这些互补特征,我们提出了一种互补特征选择模块(CFSM),以选择图像脱水的更有用功能。此外,我们介绍了一个名为Hybrid Local-Global Vision变换器(Hylog-Vit)的新版本的Vision变换器块,并将其包含在我们的脱水网络中。 Hylog-VIT块包括用于捕获本地和全球依赖性的本地和全局视觉变压器路径。结果,Hylog-VIT引入网络中的局部性并捕获全局和远程依赖性。在均匀,非均匀和夜间脱水任务上的广泛实验表明,所提出的脱水网络可以实现比基于CNNS的去吸收模型的相当甚至更好的性能。
translated by 谷歌翻译
水下杂质的光吸收和散射导致水下较差的水下成像质量。现有的基于数据驱动的基于数据的水下图像增强(UIE)技术缺乏包含各种水下场景和高保真参考图像的大规模数据集。此外,不同颜色通道和空间区域的不一致衰减不完全考虑提升增强。在这项工作中,我们构建了一个大规模的水下图像(LSUI)数据集,包括5004个图像对,并报告了一个U形变压器网络,其中变压器模型首次引入UIE任务。 U形变压器与通道 - 方面的多尺度特征融合变压器(CMSFFT)模块和空间全局功能建模变压器(SGFMT)模块集成在一起,可使用更多地加强网络对色频道和空间区域的关注严重衰减。同时,为了进一步提高对比度和饱和度,在人类视觉原理之后,设计了组合RGB,实验室和LCH颜色空间的新型损失函数。可用数据集的广泛实验验证了报告的技术的最先进性能,具有超过2dB的优势。
translated by 谷歌翻译
雨是最常见的天气之一,可以完全降低图像质量并干扰许多计算机视觉任务的执行,尤其是在大雨条件下。我们观察到:(i)雨是雨水和雨淋的混合物; (ii)场景的深度决定了雨条的强度以及变成多雨的阴霾的强度; (iii)大多数现有的DERANE方法仅在合成雨图像上进行训练,因此对现实世界的场景概括不佳。在这些观察结果的激励下,我们提出了一种新的半监督,清除降雨生成的对抗网络(半密集),该混合物由四个关键模块组成:(i)新的注意力深度预测网络以提供精确的深度估计; (ii)上下文特征预测网络由几个精心设计的详细残留块组成,以产生详细的图像上下文特征; (iii)金字塔深度引导的非本地网络,以有效地将图像上下文与深度信息整合在一起,并产生最终的无雨图像; (iv)全面的半监督损失函数,使该模型不限于合成数据集,而是平稳地将其概括为现实世界中的大雨场景。广泛的实验表明,在合成和现实世界中,我们的二十多种代表性的最先进的方法对我们的方法进行了明显的改进。
translated by 谷歌翻译
基于深度学习的低光图像增强方法通常需要巨大的配对训练数据,这对于在现实世界的场景中捕获是不切实际的。最近,已经探索了无监督的方法来消除对成对训练数据的依赖。然而,由于没有前衣,它们在不同的现实情景中表现得不稳定。为了解决这个问题,我们提出了一种基于先前(HEP)的有效预期直方图均衡的无监督的低光图像增强方法。我们的作品受到了有趣的观察,即直方图均衡增强图像的特征图和地面真理是相似的。具体而言,我们制定了HEP,提供了丰富的纹理和亮度信息。嵌入一​​个亮度模块(LUM),它有助于将低光图像分解为照明和反射率图,并且反射率图可以被视为恢复的图像。然而,基于Retinex理论的推导揭示了反射率图被噪声污染。我们介绍了一个噪声解剖学模块(NDM),以解除反射率图中的噪声和内容,具有不配对清洁图像的可靠帮助。通过直方图均衡的先前和噪声解剖,我们的方法可以恢复更精细的细节,更有能力抑制现实世界低光场景中的噪声。广泛的实验表明,我们的方法对最先进的无监督的低光增强算法有利地表现出甚至与最先进的监督算法匹配。
translated by 谷歌翻译
低光图像增强(LLIE)旨在提高在环境中捕获的图像的感知或解释性,较差的照明。该领域的最新进展由基于深度学习的解决方案为主,其中许多学习策略,网络结构,丢失功能,培训数据等已被采用。在本文中,我们提供了全面的调查,以涵盖从算法分类到开放问题的各个方面。为了检查现有方法的概括,我们提出了一个低光图像和视频数据集,其中图像和视频是在不同的照明条件下的不同移动电话的相机拍摄的。除此之外,我们首次提供统一的在线平台,涵盖许多流行的LLIE方法,其中结果可以通过用户友好的Web界面生产。除了在公开和我们拟议的数据集上对现有方法的定性和定量评估外,我们还验证了他们在黑暗中的脸部检测中的表现。这项调查与拟议的数据集和在线平台一起作为未来研究的参考来源和促进该研究领域的发展。拟议的平台和数据集以及收集的方法,数据集和评估指标是公开可用的,并将经常更新。
translated by 谷歌翻译
在弱照明条件下捕获的图像可能会严重降低图像质量。求解一系列低光图像的降解可以有效地提高图像的视觉质量和高级视觉任务的性能。在本研究中,提出了一种新的基于RETINEX的实际网络(R2RNET),用于低光图像增强,其包括三个子网:DECOM-NET,DENOISE-NET和RELIGHT-NET。这三个子网分别用于分解,去噪,对比增强和细节保存。我们的R2RNET不仅使用图像的空间信息来提高对比度,还使用频率信息来保留细节。因此,我们的模型对所有退化的图像进行了更强大的结果。与在合成图像上培训的最先前的方法不同,我们收集了第一个大型现实世界配对的低/普通灯图像数据集(LSRW数据集),以满足培训要求,使我们的模型具有更好的现实世界中的泛化性能场景。对公共数据集的广泛实验表明,我们的方法在定量和视觉上以现有的最先进方法优于现有的现有方法。此外,我们的结果表明,通过使用我们在低光条件下的方法获得的增强的结果,可以有效地改善高级视觉任务(即面部检测)的性能。我们的代码和LSRW数据集可用于:https://github.com/abcdef2000/r2rnet。
translated by 谷歌翻译
在低灯条件下捕获的图像遭受低可视性和各种成像伪影,例如真实噪音。现有的监督启示算法需要大量的像素对齐的训练图像对,这很难在实践中准备。虽然弱监督或无人监督的方法可以缓解这些挑战,但不使用配对的训练图像,由于缺乏相应的监督,一些现实世界的文物不可避免地被错误地放大。在本文中,而不是使用完美的对齐图像进行培训,我们创造性地使用未对准的现实世界图像作为指导,这很容易收集。具体地,我们提出了一个交叉图像解剖线程(CIDN),以分别提取来自低/常光图像的交叉图像亮度和图像特定内容特征。基于此,CIDN可以同时校正特征域中的亮度和抑制图像伪像,其在很大程度上将鲁棒性增加到像素偏移。此外,我们收集了一个新的低光图像增强数据集,包括具有现实世界腐败的未对准培训图像。实验结果表明,我们的模型在新建议的数据集和其他流行的低光数据集中实现了最先进的表演。
translated by 谷歌翻译
Dimage Dehazing是低级视觉中的一个活跃主题,并且随着深度学习的快速发展,已经提出了许多图像去悬式网络。尽管这些网络的管道效果很好,但改善图像飞行性能的关键机制尚不清楚。因此,我们不针对带有精美模块的飞行网络。相反,我们对流行的U-NET进行了最小的修改,以获得紧凑的飞行网络。具体而言,我们将U-NET中的卷积块与门控机构,使用选择性内核进行融合,并跳过连接,并调用所得的U-NET变体Gunet。结果,由于开销大大减少,Gunet优于多个图像脱掩的数据集上的最新方法。最后,我们通过广泛的消融研究来验证这些关键设计为图像去除网络的性能增益。
translated by 谷歌翻译