张量分解已成为许多数据科学应用中的重要工具。稀疏的进型张量时间Khatri-Rao产品(MTTKRP)是张量分解算法中的关键核,可将高阶现实世界大张量分解为多个矩阵。加速MTTKRP可以极大地加速张量分解过程。由于其不规则的内存访问特性,稀疏的MTTKRP是一个充满挑战的内核。由于能源效率和FPGA固有的并行性,在诸如MTTKRP等内核的现场可编程门阵列(FPGA)上实现加速器。本文探讨了在MTTKRP上设计自定义内存控制器的机会,关键挑战和方法,同时探索了这种自定义内存控制器的参数空间。
translated by 谷歌翻译
图形神经网络(GNN)由于其独特的能力扩展了机器学习(ML)方法,因此引起了极大的关注,该应用程序广泛定义为具有非结构化数据,尤其是图形。与其他机器学习(ML)方式相比,由于源自图类型的不规则性和异质性,图形神经网络(GNN)的加速度更具挑战性。但是,现有的努力主要集中在处理图形的不规则性上,并且没有研究其异质性。为此,我们提出了H-GCN,PL(可编程逻辑)和AIE(AI引擎)的混合加速器,以利用Xilinx Versal自适应计算加速度平台(ACAPS)的新兴异质性(ACAPS)来实现高表现GNN的确定。特别是,H-GCN根据其固有的异质性将每个图分为三个子图,并分别使用PL和AIE处理它们。为了进一步提高性能,我们探索了AIE的稀疏支持,并开发了一种有效的密度感知方法,以自动将稀疏矩阵矩阵乘法(SPMM)的瓷砖自动映射到收缩张量数阵列上。与最先进的GCN加速器相比,H-GCN平均达到1.1〜2.3倍的速度。
translated by 谷歌翻译
作为其核心计算,一种自我发挥的机制可以在整个输入序列上分配成对相关性。尽管表现良好,但计算成对相关性的成本高昂。尽管最近的工作表明了注意力分数低的元素的运行时间修剪的好处,但自我发挥机制的二次复杂性及其芯片内存能力的需求被忽略了。这项工作通过构建一个称为Sprint的加速器来解决这些约束,该加速器利用RERAM横杆阵列的固有并行性以近似方式计算注意力分数。我们的设计使用RERAM内的轻质模拟阈值电路来降低注意力评分,从而使Sprint只能获取一小部分相关数据到芯片内存。为了减轻模型准确性的潜在负面影响,Sprint重新计算数字中少数获取数据的注意力评分。相关注意分数的组合内修剪和片上重新计算可以将Sprint转化为仅线性的二次复杂性。此外,我们即使修剪后,我们也可以识别并利用相邻的注意操作之间的动态空间位置,从而消除了昂贵但冗余的数据获取。我们在各种最新的变压器模型上评估了我们提出的技术。平均而言,当使用总16KB芯片内存时,Sprint会产生7.5倍的速度和19.6倍的能量,而实际上与基线模型的等值级相当(平均为0.36%的降级)。
translated by 谷歌翻译
基于von-neumann架构的传统计算系统,数据密集型工作负载和应用程序(如机器学习)和应用程序都是基本上限制的。随着数据移动操作和能量消耗成为计算系统设计中的关键瓶颈,对近数据处理(NDP),机器学习和特别是神经网络(NN)的加速器等非传统方法的兴趣显着增加。诸如Reram和3D堆叠的新兴内存技术,这是有效地架构基于NN的基于NN的加速器,因为它们的工作能力是:高密度/低能量存储和近记忆计算/搜索引擎。在本文中,我们提出了一种为NN设计NDP架构的技术调查。通过基于所采用的内存技术对技术进行分类,我们强调了它们的相似之处和差异。最后,我们讨论了需要探索的开放挑战和未来的观点,以便改进和扩展未来计算平台的NDP架构。本文对计算机学习领域的计算机架构师,芯片设计师和研究人员来说是有价值的。
translated by 谷歌翻译
当今的大多数计算机视觉管道都是围绕深神经网络构建的,卷积操作需要大部分一般的计算工作。与标准算法相比,Winograd卷积算法以更少的MAC计算卷积,当使用具有2x2尺寸瓷砖$ F_2 $的版本时,3x3卷积的操作计数为2.25倍。即使收益很大,Winograd算法具有较大的瓷砖尺寸,即$ f_4 $,在提高吞吐量和能源效率方面具有更大的潜力,因为它将所需的MAC降低了4倍。不幸的是,具有较大瓷砖尺寸的Winograd算法引入了数值问题,这些问题阻止了其在整数域特异性加速器上的使用和更高的计算开销,以在空间和Winograd域之间转换输入和输出数据。为了解锁Winograd $ F_4 $的全部潜力,我们提出了一种新颖的Tap-Wise量化方法,该方法克服了使用较大瓷砖的数值问题,从而实现了仅整数的推断。此外,我们介绍了以功率和区域效率的方式处理Winograd转换的自定义硬件单元,并展示了如何将此类自定义模块集成到工业级,可编程的DSA中。对大量最先进的计算机视觉基准进行了广泛的实验评估表明,Tap-Wise量化算法使量化的Winograd $ F_4 $网络几乎与FP32基线一样准确。 Winograd增强的DSA可实现高达1.85倍的能源效率,最高可用于最先进的细分和检测网络的端到端速度高达1.83倍。
translated by 谷歌翻译
最新的努力改善了满足当今应用程序要求的神经网络(NN)加速器的性能,这引起了基于逻辑NN推理的新趋势,该趋势依赖于固定功能组合逻辑。将如此大的布尔函数与许多输入变量和产品项绘制到现场可编程门阵列(FPGA)上的数字信号处理器(DSP)需要一个新颖的框架,考虑到此过程中DSP块的结构和可重构性。本文中提出的方法将固定功能组合逻辑块映射到一组布尔功能,其中与每个功能相对应的布尔操作映射到DSP设备,而不是FPGA上的查找表(LUTS),以利用高性能,DSP块的低潜伏期和并行性。 %本文还提出了一种用于NNS编译和映射的创新设计和优化方法,并利用固定功能组合逻辑与DSP进行了使用高级合成流的FPGA上的DSP。 %我们在几个\ revone {DataSets}上进行的实验评估和选定的NNS与使用DSP的基于ART FPGA的NN加速器相比,根据推理潜伏期和输出准确性,证明了我们框架的可比性。
translated by 谷歌翻译
图表卷积网络(GCNS)已经引入有效地处理非欧几里德图数据。但是,GCNS在计算和内存访问中产生了大量的不规则性,这可以防止有效地利用传统的神经网络加速器。此外,现有的专用GCN加速器需要高内存卷,并且难以实现到资源有限的边缘设备上。在这项工作中,我们提出了LW-GCN,一种基于轻量级的FPGA的加速器,具有软件 - 硬件共同设计的过程,可以在GCN推理中解决计算和存储器访问中的不规则性。 LW-GCN将主GCN操作分解为稀疏密集的矩阵乘法(SDMM)和致密矩阵乘法(DMM)。我们提出了一种新颖的压缩格式来平衡PE的工作量并防止数据危险。此外,我们应用数据量化和工作负载折叠,并将GCN推理的SDMM和DMM映射到资源有限硬件上的统一架构上。 GCN和Graphsage的评估在Xilinx Kintex-7 FPGA中进行了三个流行的数据集。与现有CPU,GPU和最先进的FPGA的加速器相比,LW-GCN可将延迟缩短高达60倍,12倍,1.7倍,并分别将功率效率提高至912倍。,511x和3.87倍。此外,与NVIDIA最新的GPU Jetson Xavier NX相比,LW-GCN分别实现了32倍和84倍的加速和节能。
translated by 谷歌翻译
K-Nearest邻居搜索是各种应用程序中的基本任务之一,层次可导航的小世界(HNSW)最近在大规模云服务中引起了人们的注意,因为它在提供快速搜索的同时很容易扩展数据库。另一方面,将可编程逻辑和单个板上的可编程逻辑模块结合在一起的计算存储设备(CSD)变得流行,以解决现代计算系统的数据带宽瓶颈。在本文中,我们提出了一个计算存储平台,该平台可以加速基于SMARTSSSD CSD的基于图形的最近的邻居搜索算法。为此,我们更修改算法在硬件上更适合,并使用基于HLS和RTL的方法实现两种类型的加速器,并采用各种优化方法。此外,我们扩展了提议的平台,以拥有4个SMARTSSS,并应用图形并行性以进一步提高系统性能。结果,拟议的计算存储平台在258.66W的功率耗散时,SIFT1B数据集的每秒吞吐量达到75.59个查询,该数据集的功率耗散为12.83倍,比常规CPU和GPU和GPU更快,更快的10.43 x和10.43 x和24.33 x - 基于基于的服务器平台。借助多稳定的存储和自定义加速能力,我们相信所提出的计算存储平台是针对成本敏感的云数据中心的有前途的解决方案。
translated by 谷歌翻译
Graph convolutional neural networks (GCNs) have emerged as a key technology in various application domains where the input data is relational. A unique property of GCNs is that its two primary execution stages, aggregation and combination, exhibit drastically different dataflows. Consequently, prior GCN accelerators tackle this research space by casting the aggregation and combination stages as a series of sparse-dense matrix multiplication. However, prior work frequently suffers from inefficient data movements, leaving significant performance left on the table. We present GROW, a GCN accelerator based on Gustavson's algorithm to architect a row-wise product based sparse-dense GEMM accelerator. GROW co-designs the software/hardware that strikes a balance in locality and parallelism for GCNs, achieving significant energy-efficiency improvements vs. state-of-the-art GCN accelerators.
translated by 谷歌翻译
基于注意力的神经网络在许多AI任务中都普遍存在。尽管其出色的算法性能,但注意力机制和前馈网络(FFN)的使用仍需要过多的计算和内存资源,这通常会损害其硬件性能。尽管已经引入了各种稀疏变体,但大多数方法仅着重于缓解算法级别上的二次注意力缩放,而无需明确考虑将其方法映射到真实硬件设计上的效率。此外,大多数努力仅专注于注意机制或FFN,但没有共同优化这两个部分,导致当前的大多数设计在处理不同的输入长度时缺乏可扩展性。本文从硬件角度系统地考虑了不同变体中的稀疏模式。在算法级别上,我们提出了Fabnet,这是一种适合硬件的变体,它采用统一的蝴蝶稀疏模式来近似关注机制和FFN。在硬件级别上,提出了一种新颖的适应性蝴蝶加速器,可以在运行时通过专用硬件控件配置,以使用单个统一的硬件引擎加速不同的蝴蝶层。在远程 - ARENA数据集上,FabNet达到了与香草变压器相同的精度,同时将计算量减少10到66次,参数数量为2至22次。通过共同优化算法和硬件,我们的基于FPGA的蝴蝶加速器在归一化到同一计算预算的最新加速器上达到了14.2至23.2倍的速度。与Raspberry Pi 4和Jetson Nano上优化的CPU和GPU设计相比,我们的系统在相同的功率预算下的最大273.8和15.1倍。
translated by 谷歌翻译
Dynamic Graph Neural Networks (DGNNs) have been broadly applied in various real-life applications, such as link prediction and pandemic forecast, to capture both static structural information and temporal characteristics from dynamic graphs. Combining both time-dependent and -independent components, DGNNs manifest substantial parallel computation and data reuse potentials, but suffer from severe memory access inefficiency and data transfer overhead under the canonical one-graph-at-a-time training pattern. To tackle the challenges, we propose PiPAD, a $\underline{\textbf{Pi}}pelined$ and $\underline{\textbf{PA}}rallel$ $\underline{\textbf{D}}GNN$ training framework for the end-to-end performance optimization on GPUs. From both the algorithm and runtime level, PiPAD holistically reconstructs the overall training paradigm from the data organization to computation manner. Capable of processing multiple graph snapshots in parallel, PiPAD eliminates the unnecessary data transmission and alleviates memory access inefficiency to improve the overall performance. Our evaluation across various datasets shows PiPAD achieves $1.22\times$-$9.57\times$ speedup over the state-of-the-art DGNN frameworks on three representative models.
translated by 谷歌翻译
一般矩阵乘法或GEMM内核在高性能计算和机器学习中占据中心位置。最近的NVIDIA GPU包括Gemm加速器,如Nvidia的张量核心。他们的剥削受到双语言问题的阻碍:它需要低级编程,这意味着低程序员的工作效率或使用只提供有限组件集的库。由于建立的组件方面的REPRASING算法经常引入开销,因此图书馆缺乏灵活性限制了探索新算法的自由。因此,使用GEMMS的研究人员无法立即享受编程生产力,高性能和研究灵活性。在本文中,我们解决了这个问题。我们在科学朱莉娅编程语言中展示了三组抽象和接口来编程宝石。界面和抽象共同设计用于研究人员的需求和朱莉娅的特征,以实现足够的担忧和灵活性的充分分离,以便在不支付性能价格的情况下轻松地扩展基本宝石。将我们的Gemms与最先进的图书馆Cublas和Cutlass进行比较,我们证明我们的性能在图书馆的相同球场中,并且在某些情况下甚至超过它,而无需在CUDA C ++中编写单行代码或者组装,而不面临灵活限制。
translated by 谷歌翻译
原则上,稀疏的神经网络应该比传统的密集网络更有效。大脑中的神经元表现出两种类型的稀疏性;它们稀疏地相互连接和稀疏活跃。当组合时,这两种类型的稀疏性,称为重量稀疏性和激活稀疏性,提出了通过两个数量级来降低神经网络的计算成本。尽管存在这种潜力,但今天的神经网络只使用重量稀疏提供适度的性能益处,因为传统的计算硬件无法有效地处理稀疏网络。在本文中,我们引入了互补稀疏性,这是一种显着提高现有硬件对双稀疏网络性能的新技术。我们证明我们可以实现高性能运行的重量稀疏网络,我们可以通过结合激活稀疏性来乘以这些加速。采用互补稀疏性,我们显示出对FPGA的推断的吞吐量和能效提高了100倍。我们分析了典型的商业卷积网络等各种内核的可扩展性和资源权衡,例如Resnet-50和MobileNetv2。我们的互补稀疏性的结果表明,重量加激活稀疏性可以是有效的缩放未来AI模型的有效组合。
translated by 谷歌翻译
近年来,已经提出了许多加速器来有效处理稀疏张量代数应用(例如稀疏的神经网络)。但是,这些建议是大而多样化的设计空间中的单个点。缺乏对这些稀疏张量加速器的系统描述和建模支持阻碍了硬件设计人员无法高效,有效的设计空间探索。本文首先提出了统一的分类法,以系统地描述各种稀疏张量加速器的设计空间。基于提议的分类法,它引入了Sparseloop,这是第一个快速,准确,灵活的分析建模框架,以实现稀疏张量加速器的早期评估和探索。 Sparseloop理解了一系列体系结构规格,包括各种数据流和稀疏加速功能(例如,消除基于零的计算)。使用这些规格,Sparseloop评估了设计的加工速度和能源效率,同时考虑了使用的数据流以及使用随机张量密度模型的稀疏加速度功能引入的数据移动和计算。在代表性的加速器和工作负载中,Sparseloop的建模速度比周期级模拟快2000倍,保持相对性能趋势,并达到0.1%至8%的平均误差。通过案例研究,我们证明了Sparseloop有助于揭示设计稀疏张量加速器的重要见解的能力(例如,共同设计正交设计方面很重要)。
translated by 谷歌翻译
近年来,卷积神经网络(CNN)证明了它们在许多领域解决问题的能力,并且以前无法进行准确性。但是,这带有广泛的计算要求,这使得普通CPU无法提供所需的实时性能。同时,FPGA对加速CNN推断的兴趣激增。这是由于他们有能力创建具有不同级别的并行性的自定义设计。此外,与GPU相比,FPGA提供每瓦的性能更好。基于FPGA的CNN加速器的当前趋势是实现多个卷积层处理器(CLP),每个处理器都针对一层层量身定制。但是,CNN体系结构的日益增长的复杂性使得优化目标FPGA设备上可用的资源,以使最佳性能更具挑战性。在本文中,我们提出了CNN加速器和随附的自动设计方法,该方法采用元启发式学来分区可用的FPGA资源来设计多CLP加速器。具体而言,提出的设计工具采用模拟退火(SA)和禁忌搜索(TS)算法来查找所需的CLP数量及其各自的配置,以在给定的目标FPGA设备上实现最佳性能。在这里,重点是关键规格和硬件资源,包括数字信号处理器,阻止RAM和芯片内存储器带宽。提出了使用四个众所周知的基准CNN的实验结果和比较,表明所提出的加速框架既令人鼓舞又有前途。基于SA-/TS的多CLP比在加速Alexnet,Squeezenet 1.1,VGGNET和Googlenet架构上的最新单个/多CLP方法高1.31x-2.37倍高2.37倍。和VC709 FPGA板。
translated by 谷歌翻译
在小型电池约束的物流设备上部署现代TinyML任务需要高计算能效。使用非易失性存储器(NVM)的模拟内存计算(IMC)承诺在深神经网络(DNN)推理中的主要效率提高,并用作DNN权重的片上存储器存储器。然而,在系统级别尚未完全理解IMC的功能灵活性限制及其对性能,能量和面积效率的影响。为了目标实际的端到端的IOT应用程序,IMC阵列必须括在异构可编程系统中,引入我们旨在解决这项工作的新系统级挑战。我们介绍了一个非均相紧密的聚类架构,整合了8个RISC-V核心,内存计算加速器(IMA)和数字加速器。我们在高度异构的工作负载上基准测试,例如来自MobileNetv2的瓶颈层,显示出11.5倍的性能和9.5倍的能效改进,而在核心上高度优化并行执行相比。此外,我们通过将我们的异构架构缩放到多阵列加速器,探讨了在IMC阵列资源方面对全移动级DNN(MobileNetv2)的端到端推断的要求。我们的结果表明,我们的解决方案在MobileNetv2的端到端推断上,在执行延迟方面比现有的可编程架构更好,比最先进的异构解决方案更好的数量级集成内存计算模拟核心。
translated by 谷歌翻译
稀疏的张量正在迅速成为现代深度学习工作负载的关键组成部分。但是,开发高性能的稀疏运营商可能很困难和乏味,现有的供应商库无法满足新运营商的不断升级要求。稀疏张量编译器简化了操作员的开发,但是对深度学习的有效稀疏编译仍然具有挑战性,因为单个稀疏格式无法最大程度地提高硬件效率,并且单次弹出编译器无法跟上最新的硬件和系统进步。我们表明,解决这两个挑战的关键是两种合成性。在本文中,我们提出了SparSetir,这是一种稀疏的张张汇编抽象,可为深度学习工作负载提供可合理的格式和可组合的转换。 Sparsetir在这些可组合组件上构建一个搜索空间,以进行性能调整。通过这些改进,SparSetir获得了单个操作员的GPU上的一致性能加速与供应商库:GNN操作员的1.1-3.3倍,稀疏变压器操作员的1.1-4.4x。 Sparsetir还以1.1-2.2倍的速度加速了端到端GNN,用于图形训练,而RGCN推断为0.9-26x。
translated by 谷歌翻译
State-of-the-art deep neural networks (DNNs) have hundreds of millions of connections and are both computationally and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources and power budgets. While custom hardware helps the computation, fetching weights from DRAM is two orders of magnitude more expensive than ALU operations, and dominates the required power.Previously proposed 'Deep Compression' makes it possible to fit large DNNs (AlexNet and VGGNet) fully in on-chip SRAM. This compression is achieved by pruning the redundant connections and having multiple connections share the same weight. We propose an energy efficient inference engine (EIE) that performs inference on this compressed network model and accelerates the resulting sparse matrix-vector multiplication with weight sharing. Going from DRAM to SRAM gives EIE 120× energy saving; Exploiting sparsity saves 10×; Weight sharing gives 8×; Skipping zero activations from ReLU saves another 3×. Evaluated on nine DNN benchmarks, EIE is 189× and 13× faster when compared to CPU and GPU implementations of the same DNN without compression. EIE has a processing power of 102 GOPS/s working directly on a compressed network, corresponding to 3 TOPS/s on an uncompressed network, and processes FC layers of AlexNet at 1.88×10 4 frames/sec with a power dissipation of only 600mW. It is 24,000× and 3,400× more energy efficient than a CPU and GPU respectively. Compared with DaDianNao, EIE has 2.9×, 19× and 3× better throughput, energy efficiency and area efficiency.
translated by 谷歌翻译
图表卷积网络(GCNS)已成为最先进的图形学习模型。但是,它可以令人难以置于大图数据集的推断GCNS,这会将其应用于大型实际图表并阻碍更深层更复杂的GCN图形的探讨。这是因为真实世界图可能非常大而稀疏。此外,GCN的节点度倾向于遵循幂律分布,因此具有高度不规则的邻接矩阵,导致数据处理和移动中的禁止低效率,从而显着地限制了可实现的GCN加速效率。为此,本文提出了一种GCN算法和加速器协同设计框架被称为GCOD,其在很大程度上可以缓解上述GCN不规则性并提高GCNS推理效率。具体地,在算法级别上,GCOD集成了分割和征服GCN训练策略,该训练策略将图形偏离在本地邻域中的密集或稀疏,而不会影响模型精度,从而导致(主要)的图形邻接矩阵仅仅是两个级别的工作量并享受大部分增强的规律性,从而轻松加速。在硬件水平上,我们进一步开发了一个具有分离发动机的专用双子加速器,以处理每个上述密集和稀疏工作负载,进一步提高整体利用率和加速效率。广泛的实验和消融研究验证了我们的GCOD始终如一地减少了与CPU,GPU和现有技术GCN加速器相比的15286倍,294倍,7.8倍和2.5倍的加速,包括HYGCN和AWB -GCN分别在保持甚至提高任务准确性的同时。
translated by 谷歌翻译
这项工作侧重于特定于域的加速器的有效敏捷设计方法。我们采用垂直开发堆栈的功能逐个功能增强,并将其应用于TVM / VTA推理加速器。我们已经增强了VTA设计空间,并启用了用于额外工作负载的端到端支持。这是通过增强VTA微架构和指令集架构(ISA)来实现的,以及通过增强TVM编译堆栈来支持各种VTA配置。 VTA TSIM实现(基于凿子)已通过ALU / GEMM执行单元的完全流水线版本增强。在TSIM中,内存宽度现在可以在8-64字节之间。对于支持较大的刮板,已经使场宽度更加灵活。已添加新的说明:元素 - WISE 8位乘法,支持深度卷积,并使用焊盘值的选择加载以支持最大池。还添加了对更多层和更好的双缓冲。完全管制的ALU / GEMM有助于显着帮助:4.9倍的循环较少,最小区域更改为在默认配置下运行RESET-18。可以实例化特征在于11.5倍的循环计数的配置,以12倍的循环计数更大的区域。显示了区域性能帕累托曲线上的许多点,展示了执行单元尺寸,内存接口宽度和刻痕尺寸的余额。最后,VTA现在能够运行MobileNet 1.0和所有层进行Resnet,包括先前禁用的池和完全连接的图层。 TVM / VTA架构始终在几分钟内以RTL呈现端到端工作量评估。通过我们的修改,它现在提供了更大的可行配置,具有广泛的成本与性能。所有提到的所有功能都可以在OpenSource叉中提供,而这些功能的子集已经上游。
translated by 谷歌翻译