机器学习(ML)团队经常在项目上工作,只是为了意识到模型的性能还不够好。确实,支持ML的系统的成功涉及将数据与业务问题保持一致,将其转化为ML任务,尝试算法,评估模型,捕获用户的数据等。文献表明,支持ML的系统很少是基于此类问题的精确规格而构建的,这导致ML团队由于错误的假设而变得不一致,这可能会影响此类系统的质量和整体项目成功。为了帮助解决此问题,本文将我们的工作描述为基于透视的方法,用于指定启用ML的系统。该方法涉及分析一组45毫升关注,分为五个观点:目标,用户体验,基础架构,模型和数据。本文的主要贡献是提供两个新的工件,可用于帮助指定支持ML的系统:(i)基于透视的ML任务和关注图以及(ii)基于透视的ML规范模板。
translated by 谷歌翻译
在软件项目中引入机器学习(ML)组件创造了软件工程师与数据科学家和其他专家合作。虽然合作可以始终具有挑战性,但ML介绍了探索性模型开发过程的额外挑战,需要额外的技能和知识,测试ML系统的困难,需要连续演化和监测,以及非传统质量要求,如公平性和解释性。通过采访来自28个组织的45名从业者,我们确定了在建立和将ML系统部署到生产时面临的关键合作挑战。我们报告了生产ML系统的开发中的共同合作点,以获得要求,数据和集成以及相应的团队模式和挑战。我们发现,这些挑战中的大部分挑战围绕通信,文档,工程和流程以及收集建议以解决这些挑战。
translated by 谷歌翻译
人工智能(AI)治理调节行使权威和控制AI的管理。它旨在通过有效利用数据并最大程度地减少与AI相关的成本和风险来利用AI。尽管AI治理和AI伦理等主题在理论,哲学,社会和监管层面上进行了详尽的讨论,但针对公司和公司的AI治理工作有限。这项工作将AI产品视为系统,在该系统中,通过机器学习(ML)模型(培训)数据传递关键功能。我们通过在AI和相关领域(例如ML)合成文献来得出一个概念框架。我们的框架将AI治理分解为数据的治理,(ML)模型和(AI)系统沿着四个维度。它与现有的IT和数据治理框架和实践有关。它可以由从业者和学者都采用。对于从业者来说,主要是研究论文的综合,但从业者的出版物和监管机构的出版物也为实施AI治理提供了宝贵的起点,而对于学者来说,该论文强调了许多AI治理领域,值得更多关注。
translated by 谷歌翻译
随着各种公开的AI伦理原则的共识,差距仍然可以随时采用设计和开发负责任的AI系统。我们研究了来自澳大利亚国家科学研究机构(CSIRO)的研究人员和工程师的实践和经验,他们参与设计和开发AI系统的一系列目的。半结构化访谈用于检查参与者的做法如何与澳大利亚政府提出的一套高级AI伦理原则涉及并对齐。原则包括:隐私保护和安全,可靠性和安全性,透明度和解释性,公平性,竞争性,责任,人以人为本的价值观和人类,社会与环境福祉。研究了研究人员和工程师的见解以及在原则的实际应用中为它们提供的挑战。最后,提供了一系列组织响应,以支持实施高级AI道德原则。
translated by 谷歌翻译
机器学习(ML)系统的开发和部署可以用现代工具轻松执行,但该过程通常是匆忙和意思是结束的。缺乏勤奋会导致技术债务,范围蠕变和未对准的目标,模型滥用和失败,以及昂贵的后果。另一方面,工程系统遵循明确定义的流程和测试标准,以简化高质量,可靠的结果的开发。极端是航天器系统,其中关键任务措施和鲁棒性在开发过程中根深蒂固。借鉴航天器工程和ML的经验(通过域名通过产品的研究),我们开发了一种经过验证的机器学习开发和部署的系统工程方法。我们的“机器学习技术准备水平”(MLTRL)框架定义了一个原则的过程,以确保强大,可靠和负责的系统,同时为ML工作流程流线型,包括来自传统软件工程的关键区别。 MLTRL甚至更多,MLTRL为跨团队和组织的人们定义了一个人工智能和机器学习技术的人员。在这里,我们描述了通过生产化和部署在医学诊断,消费者计算机视觉,卫星图像和粒子物理学等领域,以通过生产和部署在基本研究中开发ML方法的几个现实世界使用情况的框架和阐明。
translated by 谷歌翻译
在过去几年中的自然语言处理(NLP)研究的进展为自动用户交互或改进的数据分析提供了公司的新商业机会。建立复杂的NLP应用需要处理现代机器学习(ML)技术,从而阻碍企业建立成功的NLP项目。我们在应用NLP研究项目中的经验表明,具有质量保证的生产环境中的研究原型在生产环境中的不断整合在软件中建立了信任,并为业务目标提供了便利性和有用性。我们将印章4 NLP介绍为开发NLP应用程序的迭代和增量过程模型。通过邮票4 NLP,我们将软件工程原则与数据科学的最佳实践合并。实例化我们的流程模型允许通过利用模板,公约和实现,使开发人员和数据科学家专注于业务目标来有效地创建原型。由于我们的迭代 - 增量方法,企业可以在每次迭代后将增强版的原型版本部署到他们的软件环境中,最大限度地提高潜在的业务价值和信任,并避免成功的成本永不部署的实验。
translated by 谷歌翻译
机器学习(ML)模型的开发不仅仅是软件开发的特殊情况(SD):ML模型即使没有以看似无法控制的方式直接人类互动,也可以获取属性并满足要求。但是,可以形式上描述基础过程。我们为ML定义了一个全面的SD流程模型,该模型涵盖了文献中描述的大多数任务和文物。除了生产必要的工件外,我们还专注于以规格的形式生成和验证拟合描述。我们强调即使在初步训练和测试后,即使在生命周期中进一步发展ML模型的重要性。因此,我们提供了各种交互点,具有标准SD过程,其中ML通常是封装的任务。此外,我们的SD过程模型允许将ML作为(元)优化问题提出。如果严格自动化,则可以用来实现自适应自主系统。最后,我们的SD流程模型具有时间的描述,可以推理ML开发过程中的进度。这可能会导致ML领域内形式方法的进一步应用。
translated by 谷歌翻译
期望与成功采用AI来创新和改善业务之间仍然存在很大的差距。由于深度学习的出现,AI的采用率更为复杂,因为它经常结合大数据和物联网,从而影响数据隐私。现有的框架已经确定需要专注于以人为中心的设计,结合技术和业务/组织的观点。但是,信任仍然是一个关键问题,需要从一开始就设计。拟议的框架从以人为本的设计方法扩展,强调和维持基于该过程的信任。本文提出了负责人工智能(AI)实施的理论框架。拟议的框架强调了敏捷共同创造过程的协同业务技术方法。目的是简化AI的采用过程来通过在整个项目中参与所有利益相关者来创新和改善业务,以便AI技术的设计,开发和部署与人合作而不是孤立。该框架对基于分析文献综述,概念框架设计和从业者的中介专业知识的负责人AI实施提出了新的观点。该框架强调在以人为以人为中心的设计和敏捷发展中建立和维持信任。这种以人为中心的方式与设计原则的隐私相符和启用。该技术和最终用户的创建者正在共同努力,为业务需求和人类特征定制AI解决方案。关于采用AI来协助医院计划的说明性案例研究将证明该拟议框架适用于现实生活中的应用。
translated by 谷歌翻译
负责任的AI被广泛认为是我们时代最大的科学挑战之一,也是释放AI市场并增加采用率的关键。为了应对负责任的AI挑战,最近已经发布了许多AI伦理原则框架,AI系统应该符合这些框架。但是,没有进一步的最佳实践指导,从业者除了真实性之外没有什么。同样,在算法级别而不是系统级的算法上进行了重大努力,主要集中于数学无关的道德原则(例如隐私和公平)的一部分。然而,道德问题在开发生命周期的任何步骤中都可能发生,从而超过AI算法和模型以外的系统的许多AI,非AI和数据组件。为了从系统的角度操作负责任的AI,在本文中,我们采用了一种面向模式的方法,并根据系统的多媒体文献综述(MLR)的结果提出了负责任的AI模式目录。与其呆在道德原则层面或算法层面上,我们专注于AI系统利益相关者可以在实践中采取的模式,以确保开发的AI系统在整个治理和工程生命周期中负责。负责的AI模式编目将模式分为三组:多层次治理模式,可信赖的过程模式和负责任的逐设计产品模式。这些模式为利益相关者实施负责任的AI提供了系统性和可行的指导。
translated by 谷歌翻译
预测模型越来越多地用于在医疗保健,金融和政策等高风险领域中做出各种结果决策。确保这些模型做出准确的预测,对数据的变化,不依赖虚假特征,并且不会过分区分少数群体,这变得至关重要。为此,最近的文献提出了几种涵盖各个领域的方法,例如解释性,公平性和鲁棒性。当这种方法迎合对用户对模型的理解时,需要以人为本。但是,一旦部署了监测机器学习的需求和挑战,就存在研究差距。为了填补这一差距,我们对13位从业人员进行了访谈研究,他们在部署ML模型并与跨越领域的客户互动,例如金融服务,医疗保健,招聘,在线零售,计算广告和对话助理等领域。我们确定了在现实世界应用中对模型监控的各种挑战和要求。具体而言,我们发现了模型监视系统的需求和挑战,以阐明监测观察结果对结果的影响。此外,此类见解必须是可行的,可靠的,可针对特定于域的用例定制,并认知考虑以避免信息超负荷。
translated by 谷歌翻译
如今,由于最近在人工智能(AI)和机器学习(ML)中的近期突破,因此,智能系统和服务越来越受欢迎。然而,机器学习不仅满足软件工程,不仅具有有希望的潜力,而且还具有一些固有的挑战。尽管最近的一些研究努力,但我们仍然没有明确了解开发基于ML的申请和当前行业实践的挑战。此外,目前尚不清楚软件工程研究人员应将其努力集中起来,以更好地支持ML应用程序开发人员。在本文中,我们报告了一个旨在了解ML应用程序开发的挑战和最佳实践的调查。我们合成从80名从业者(以不同的技能,经验和应用领域)获得的结果为17个调查结果;概述ML应用程序开发的挑战和最佳实践。参与基于ML的软件系统发展的从业者可以利用总结最佳实践来提高其系统的质量。我们希望报告的挑战将通知研究界有关需要调查的主题,以改善工程过程和基于ML的申请的质量。
translated by 谷歌翻译
连续的软件工程在许多领域已变得司空见惯。但是,在调节需要考虑其他问题的密集部门时,通常认为很难采用连续的开发方法,例如DevOps。在本文中,我们提出了一种将拉力请求用作设计控件的方法,并将这种方法应用于认证的医疗系统中的机器学习,这是一种新颖的技术,这是一种新颖的技术,旨在为机器学习系统增加解释性,作为监管审核跟踪。我们以前曾使用过一种工业系统来证明这种方法,以证明如何以连续的方式开发医疗系统。
translated by 谷歌翻译
无线电接入网络(RAN)技术继续见证巨大的增长,开放式运行越来越最近的势头。在O-RAN规范中,RAN智能控制器(RIC)用作自动化主机。本文介绍了对O-RAN堆栈相关的机器学习(ML)的原则,特别是加强学习(RL)。此外,我们审查无线网络的最先进的研究,并将其投入到RAN框架和O-RAN架构的层次结构上。我们在整个开发生命周期中提供ML / RL模型面临的挑战的分类:从系统规范到生产部署(数据采集,模型设计,测试和管理等)。为了解决挑战,我们将一组现有的MLOPS原理整合,当考虑RL代理时,具有独特的特性。本文讨论了系统的生命周期模型开发,测试和验证管道,称为:RLOPS。我们讨论了RLOP的所有基本部分,包括:模型规范,开发和蒸馏,生产环境服务,运营监控,安全/安全和数据工程平台。根据这些原则,我们提出了最佳实践,以实现自动化和可重复的模型开发过程。
translated by 谷歌翻译
即将开发我们呼叫所体现的系统的新一代越来越自主和自学习系统。在将这些系统部署到真实上下文中,我们面临各种工程挑战,因为它以有益的方式协调所体现的系统的行为至关重要,确保他们与我们以人为本的社会价值观的兼容性,并且设计可验证安全可靠的人类-Machine互动。我们正在争辩说,引发系统工程将来自嵌入到体现系统的温室,并确保动态联合的可信度,这种情况意识到的情境意识,意图,探索,探险,不断发展,主要是不可预测的,越来越自主的体现系统在不确定,复杂和不可预测的现实世界环境中。我们还识别了许多迫切性的系统挑战,包括可信赖的体现系统,包括强大而人为的AI,认知架构,不确定性量化,值得信赖的自融化以及持续的分析和保证。
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
最近增加的机器学习方法(ML)方法的复杂性导致了减轻研究和行业发展过程的必要性。 ML管道已成为许多领域,数据科学家和研究人员的专家的重要工具,使他们可以轻松地整理几个ML模型,以涵盖从RAW数据集开始的完整分析过程。多年来,已经提出了几种解决方案来自动化ML管道的构建,其中大多数集中在输入数据集的语义方面和特征上。但是,考虑到ML系统所需的新质量问题(如公平,解释性,隐私等)仍然缺失。在本文中,我们首先从文献中确定ML系统的关键质量属性。此外,我们通过正确扩展功能模型元模型,为优质ML管道提出了一种新的工程方法。提出的方法允许对ML管道进行建模,其质量要求(在整个管道和单个阶段)以及用于实现每个管道阶段的算法的质量特征。最后,我们证明了考虑分类问题的模型的表现力。
translated by 谷歌翻译
基于机器学习(ML)的系统的制作需要在其生命周期中进行统计控制。仔细量化业务需求和识别影响业务需求的关键因素降低了项目故障的风险。业务需求的量化导致随机变量的定义,表示通过统计实验需要分析的系统关键性能指标。此外,可提供的培训和实验结果产生影响系统的设计。开发系统后,测试并不断监控,以确保其符合其业务需求。这是通过持续应用统计实验来分析和控制关键绩效指标来完成的。本书教授制作和开发基于ML的系统的艺术。它倡导“首先”方法,强调从项目生命周期开始定义统计实验的需要。它还详细讨论了如何在整个生命周期中对基于ML的系统进行统计控制。
translated by 谷歌翻译
机器学习透明度(ML),试图揭示复杂模型的工作机制。透明ML承诺推进人为因素在目标用户中以人为本的人体目标的工程目标。从以人为本的设计视角,透明度不是ML模型的属性,而是一种能力,即算法与用户之间的关系;因此,与用户的迭代原型和评估对于获得提供透明度的充足解决方案至关重要。然而,由于有限的可用性和最终用户,遵循了医疗保健和医学图像分析的人以人为本的设计原则是具有挑战性的。为了调查医学图像分析中透明ML的状态,我们对文献进行了系统审查。我们的评论在医学图像分析应用程序的透明ML的设计和验证方面揭示了多种严重的缺点。我们发现,大多数研究到达迄今为止透明度作为模型本身的属性,类似于任务性能,而不考虑既未开发也不考虑最终用户也不考虑评估。此外,缺乏用户研究以及透明度声明的偶发验证将当代研究透明ML的医学图像分析有可能对用户难以理解的风险,因此临床无关紧要。为了缓解即将到来的研究中的这些缺点,同时承认人以人为中心设计在医疗保健中的挑战,我们介绍了用于医学图像分析中的透明ML系统的系统设计指令。 Intrult指南建议形成的用户研究作为透明模型设计的第一步,以了解用户需求和域要求。在此过程之后,会产生支持设计选择的证据,最终增加了算法提供透明度的可能性。
translated by 谷歌翻译
关键应用程序中机器学习(ML)组件的集成引入了软件认证和验证的新挑战。正在开发新的安全标准和技术准则,以支持基于ML的系统的安全性,例如ISO 21448 SOTIF用于汽车域名,并保证机器学习用于自主系统(AMLAS)框架。 SOTIF和AMLA提供了高级指导,但对于每个特定情况,必须将细节凿出来。我们启动了一个研究项目,目的是证明开放汽车系统中ML组件的完整安全案例。本文报告说,Smikk的安全保证合作是由行业级别的行业合作的,这是一个基于ML的行人自动紧急制动示威者,在行业级模拟器中运行。我们演示了AMLA在伪装上的应用,以在简约的操作设计域中,即,我们为其基于ML的集成组件共享一个完整的安全案例。最后,我们报告了经验教训,并在开源许可下为研究界重新使用的开源许可提供了傻笑和安全案例。
translated by 谷歌翻译
人类服务系统做出关键决策,影响社会中的个人。美国儿童福利系统做出了这样的决定,从筛查热线报告的报告报告,涉嫌虐待或忽视儿童保护性调查,使儿童接受寄养,再到将儿童返回永久家庭环境。这些对儿童生活的复杂而有影响力的决定取决于儿童福利决策者的判断。儿童福利机构一直在探索使用包括机器学习(ML)的经验,数据信息的方法来支持这些决策的方法。本文描述了ML支持儿童福利决策的概念框架。 ML框架指导儿童福利机构如何概念化ML可以解决的目标问题;兽医可用的管理数据用于构建ML;制定和开发ML规格,以反映机构正在进行的相关人群和干预措施;随着时间的流逝,部署,评估和监视ML作为儿童福利环境,政策和实践变化。道德考虑,利益相关者的参与以及避免框架的影响和成功的共同陷阱。从摘要到具体,我们描述了该框架的一种应用,以支持儿童福利决策。该ML框架虽然以儿童福利为中心,但可以推广用于解决其他公共政策问题。
translated by 谷歌翻译