连续的软件工程在许多领域已变得司空见惯。但是,在调节需要考虑其他问题的密集部门时,通常认为很难采用连续的开发方法,例如DevOps。在本文中,我们提出了一种将拉力请求用作设计控件的方法,并将这种方法应用于认证的医疗系统中的机器学习,这是一种新颖的技术,这是一种新颖的技术,旨在为机器学习系统增加解释性,作为监管审核跟踪。我们以前曾使用过一种工业系统来证明这种方法,以证明如何以连续的方式开发医疗系统。
translated by 谷歌翻译
机器学习(ML)系统的开发和部署可以用现代工具轻松执行,但该过程通常是匆忙和意思是结束的。缺乏勤奋会导致技术债务,范围蠕变和未对准的目标,模型滥用和失败,以及昂贵的后果。另一方面,工程系统遵循明确定义的流程和测试标准,以简化高质量,可靠的结果的开发。极端是航天器系统,其中关键任务措施和鲁棒性在开发过程中根深蒂固。借鉴航天器工程和ML的经验(通过域名通过产品的研究),我们开发了一种经过验证的机器学习开发和部署的系统工程方法。我们的“机器学习技术准备水平”(MLTRL)框架定义了一个原则的过程,以确保强大,可靠和负责的系统,同时为ML工作流程流线型,包括来自传统软件工程的关键区别。 MLTRL甚至更多,MLTRL为跨团队和组织的人们定义了一个人工智能和机器学习技术的人员。在这里,我们描述了通过生产化和部署在医学诊断,消费者计算机视觉,卫星图像和粒子物理学等领域,以通过生产和部署在基本研究中开发ML方法的几个现实世界使用情况的框架和阐明。
translated by 谷歌翻译
负责任的AI被广泛认为是我们时代最大的科学挑战之一,也是释放AI市场并增加采用率的关键。为了应对负责任的AI挑战,最近已经发布了许多AI伦理原则框架,AI系统应该符合这些框架。但是,没有进一步的最佳实践指导,从业者除了真实性之外没有什么。同样,在算法级别而不是系统级的算法上进行了重大努力,主要集中于数学无关的道德原则(例如隐私和公平)的一部分。然而,道德问题在开发生命周期的任何步骤中都可能发生,从而超过AI算法和模型以外的系统的许多AI,非AI和数据组件。为了从系统的角度操作负责任的AI,在本文中,我们采用了一种面向模式的方法,并根据系统的多媒体文献综述(MLR)的结果提出了负责任的AI模式目录。与其呆在道德原则层面或算法层面上,我们专注于AI系统利益相关者可以在实践中采取的模式,以确保开发的AI系统在整个治理和工程生命周期中负责。负责的AI模式编目将模式分为三组:多层次治理模式,可信赖的过程模式和负责任的逐设计产品模式。这些模式为利益相关者实施负责任的AI提供了系统性和可行的指导。
translated by 谷歌翻译
无线电接入网络(RAN)技术继续见证巨大的增长,开放式运行越来越最近的势头。在O-RAN规范中,RAN智能控制器(RIC)用作自动化主机。本文介绍了对O-RAN堆栈相关的机器学习(ML)的原则,特别是加强学习(RL)。此外,我们审查无线网络的最先进的研究,并将其投入到RAN框架和O-RAN架构的层次结构上。我们在整个开发生命周期中提供ML / RL模型面临的挑战的分类:从系统规范到生产部署(数据采集,模型设计,测试和管理等)。为了解决挑战,我们将一组现有的MLOPS原理整合,当考虑RL代理时,具有独特的特性。本文讨论了系统的生命周期模型开发,测试和验证管道,称为:RLOPS。我们讨论了RLOP的所有基本部分,包括:模型规范,开发和蒸馏,生产环境服务,运营监控,安全/安全和数据工程平台。根据这些原则,我们提出了最佳实践,以实现自动化和可重复的模型开发过程。
translated by 谷歌翻译
人工智能(AI)治理调节行使权威和控制AI的管理。它旨在通过有效利用数据并最大程度地减少与AI相关的成本和风险来利用AI。尽管AI治理和AI伦理等主题在理论,哲学,社会和监管层面上进行了详尽的讨论,但针对公司和公司的AI治理工作有限。这项工作将AI产品视为系统,在该系统中,通过机器学习(ML)模型(培训)数据传递关键功能。我们通过在AI和相关领域(例如ML)合成文献来得出一个概念框架。我们的框架将AI治理分解为数据的治理,(ML)模型和(AI)系统沿着四个维度。它与现有的IT和数据治理框架和实践有关。它可以由从业者和学者都采用。对于从业者来说,主要是研究论文的综合,但从业者的出版物和监管机构的出版物也为实施AI治理提供了宝贵的起点,而对于学者来说,该论文强调了许多AI治理领域,值得更多关注。
translated by 谷歌翻译
如今,由于最近在人工智能(AI)和机器学习(ML)中的近期突破,因此,智能系统和服务越来越受欢迎。然而,机器学习不仅满足软件工程,不仅具有有希望的潜力,而且还具有一些固有的挑战。尽管最近的一些研究努力,但我们仍然没有明确了解开发基于ML的申请和当前行业实践的挑战。此外,目前尚不清楚软件工程研究人员应将其努力集中起来,以更好地支持ML应用程序开发人员。在本文中,我们报告了一个旨在了解ML应用程序开发的挑战和最佳实践的调查。我们合成从80名从业者(以不同的技能,经验和应用领域)获得的结果为17个调查结果;概述ML应用程序开发的挑战和最佳实践。参与基于ML的软件系统发展的从业者可以利用总结最佳实践来提高其系统的质量。我们希望报告的挑战将通知研究界有关需要调查的主题,以改善工程过程和基于ML的申请的质量。
translated by 谷歌翻译
随着各种公开的AI伦理原则的共识,差距仍然可以随时采用设计和开发负责任的AI系统。我们研究了来自澳大利亚国家科学研究机构(CSIRO)的研究人员和工程师的实践和经验,他们参与设计和开发AI系统的一系列目的。半结构化访谈用于检查参与者的做法如何与澳大利亚政府提出的一套高级AI伦理原则涉及并对齐。原则包括:隐私保护和安全,可靠性和安全性,透明度和解释性,公平性,竞争性,责任,人以人为本的价值观和人类,社会与环境福祉。研究了研究人员和工程师的见解以及在原则的实际应用中为它们提供的挑战。最后,提供了一系列组织响应,以支持实施高级AI道德原则。
translated by 谷歌翻译
在软件项目中引入机器学习(ML)组件创造了软件工程师与数据科学家和其他专家合作。虽然合作可以始终具有挑战性,但ML介绍了探索性模型开发过程的额外挑战,需要额外的技能和知识,测试ML系统的困难,需要连续演化和监测,以及非传统质量要求,如公平性和解释性。通过采访来自28个组织的45名从业者,我们确定了在建立和将ML系统部署到生产时面临的关键合作挑战。我们报告了生产ML系统的开发中的共同合作点,以获得要求,数据和集成以及相应的团队模式和挑战。我们发现,这些挑战中的大部分挑战围绕通信,文档,工程和流程以及收集建议以解决这些挑战。
translated by 谷歌翻译
拟议的欧洲人工智能法案(AIA)是第一次尝试详细阐述由任何主要全球经济开展的AI一般法律框架。因此,AIA可能成为如何调节AI系统(应当)的更大话语中的参考点。在本文中,我们描述并讨论了AIA中提出的两项初级执法机制:高风险AI系统的提供者预计会进行的符合性评估,以及提供者必须建立履行表现的市场后监测计划在整个寿命中的高风险AI系统。我们认为,AIA可以被解释为建立欧洲审计的欧洲生态系统的建议,尽管换句话说。我们的分析提供了两个主要贡献。首先,通过描述从现有文献借入的AI审计中借用的AIA中包含的执法机制,我们帮助AI系统的提供者了解它们如何证明在实践中遵守AIA所示的要求。其次,通过从审计视角审查AIA,我们寻求提供以前研究如何进一步改进AIA中概述的监管方法的可转让教训。我们通过突出AIA的七个方面来结束修正案(或简单澄清)会有所帮助。最重要的是,需要将模糊概念转化为可验证标准,并加强基于内部支票的符合性评估的体制保障措施。
translated by 谷歌翻译
机器学习传感器代表了嵌入式机器学习应用程序未来的范式转移。当前的嵌入式机器学习(ML)实例化遭受了复杂的整合,缺乏模块化以及数据流动的隐私和安全问题。本文提出了一个以数据为中心的范式,用于将传感器智能嵌入边缘设备上,以应对这些挑战。我们对“传感器2.0”的愿景需要将传感器输入数据和ML处理从硬件级别隔离到更广泛的系统,并提供一个薄的界面,以模拟传统传感器的功能。这种分离导致模块化且易于使用的ML传感器设备。我们讨论了将ML处理构建到嵌入式系统上控制微处理器的软件堆栈中的标准方法所带来的挑战,以及ML传感器的模块化如何减轻这些问题。 ML传感器提高了隐私和准确性,同时使系统构建者更容易将ML集成到其产品中,以简单的组件。我们提供了预期的ML传感器和说明性数据表的例子,以表现出来,并希望这将建立对话使我们朝着传感器2.0迈进。
translated by 谷歌翻译
Artificial intelligence (AI) in its various forms finds more and more its way into complex distributed systems. For instance, it is used locally, as part of a sensor system, on the edge for low-latency high-performance inference, or in the cloud, e.g. for data mining. Modern complex systems, such as connected vehicles, are often part of an Internet of Things (IoT). To manage complexity, architectures are described with architecture frameworks, which are composed of a number of architectural views connected through correspondence rules. Despite some attempts, the definition of a mathematical foundation for architecture frameworks that are suitable for the development of distributed AI systems still requires investigation and study. In this paper, we propose to extend the state of the art on architecture framework by providing a mathematical model for system architectures, which is scalable and supports co-evolution of different aspects for example of an AI system. Based on Design Science Research, this study starts by identifying the challenges with architectural frameworks. Then, we derive from the identified challenges four rules and we formulate them by exploiting concepts from category theory. We show how compositional thinking can provide rules for the creation and management of architectural frameworks for complex systems, for example distributed systems with AI. The aim of the paper is not to provide viewpoints or architecture models specific to AI systems, but instead to provide guidelines based on a mathematical formulation on how a consistent framework can be built up with existing, or newly created, viewpoints. To put in practice and test the approach, the identified and formulated rules are applied to derive an architectural framework for the EU Horizon 2020 project ``Very efficient deep learning in the IoT" (VEDLIoT) in the form of a case study.
translated by 谷歌翻译
人工智能(AI)系统可以提供许多有益的功能,也可以提供不良事件的风险。一些AI系统可能会出现在社会规模上具有很高或灾难性后果的事件的风险。美国国家标准技术研究所(NIST)正在开发NIST人工智能风险管理框架(AI RMF),作为对AI开发人员和其他人的AI风险评估和管理的自愿指导。 NIST为了解决带有灾难性后果的事件的风险,表示有必要将高级原则转化为可操作的风险管理指导。在本文档中,我们提供了详细的可操作指示建议,旨在识别和管理具有很高或灾难性后果的事件的风险,旨在作为AI RMF版本1.0的NIST的风险管理实践资源(计划于2023年初发布),或适用于AI RMF用户或其他AI风险管理指南和标准。我们还为建议提供方法。我们为AI RMF 1.0提供了可行的指导建议:确定来自AI系统的潜在意外用途和滥用的风险;在风险评估和影响评估范围内包括灾难性风险因素;确定和减轻人权危害;并报告有关AI风险因素在内的信息,包括灾难性风险因素。此外,我们还为后来版本的AI RMF或补充出版物提供有关路线图的其他问题的建议。其中包括:提供AI RMF配置文件,并具有额外的多功能或通用AI的辅助指南。我们的目标是使这项工作成为具体的风险管理实践的贡献,并激发有关如何解决AI标准中灾难性风险和相关问题的建设性对话。
translated by 谷歌翻译
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
translated by 谷歌翻译
近年来,获得医疗保健监管批准的机器学习(ML)技术的数量已大大增加,从而使其可以投入市场。但是,与ML的数据驱动和学习的行为相比,最初是为传统软件设计了用于它们的监管框架。由于框架正在改革的过程中,因此有必要主动确保ML的安全以防止患者的安全受到损害。在自主系统(AMLAS)方法中使用的机器学习的保证是由基于系统安全性良好概念的Assunity International计划开发的。这篇综述通过咨询ML制造商了解该方法是否融合或与其当前安全保证实践有所不同,是否存在差距和限制,是否有差距和局限性,以及当应用于医疗保健领域时是否适合目的。通过这项工作,我们认为,当应用于医疗机器学习技术时,AMLAS是一种安全保证方法,尽管医疗保健特定的补充指导的开发将使实施该方法论的人受益。
translated by 谷歌翻译
The optimal liability framework for AI systems remains an unsolved problem across the globe. In a much-anticipated move, the European Commission advanced two proposals outlining the European approach to AI liability in September 2022: a novel AI Liability Directive and a revision of the Product Liability Directive. They constitute the final, and much-anticipated, cornerstone of AI regulation in the EU. Crucially, the liability proposals and the EU AI Act are inherently intertwined: the latter does not contain any individual rights of affected persons, and the former lack specific, substantive rules on AI development and deployment. Taken together, these acts may well trigger a Brussels effect in AI regulation, with significant consequences for the US and other countries. This paper makes three novel contributions. First, it examines in detail the Commission proposals and shows that, while making steps in the right direction, they ultimately represent a half-hearted approach: if enacted as foreseen, AI liability in the EU will primarily rest on disclosure of evidence mechanisms and a set of narrowly defined presumptions concerning fault, defectiveness and causality. Hence, second, the article suggests amendments, which are collected in an Annex at the end of the paper. Third, based on an analysis of the key risks AI poses, the final part of the paper maps out a road for the future of AI liability and regulation, in the EU and beyond. This includes: a comprehensive framework for AI liability; provisions to support innovation; an extension to non-discrimination/algorithmic fairness, as well as explainable AI; and sustainability. I propose to jump-start sustainable AI regulation via sustainability impact assessments in the AI Act and sustainable design defects in the liability regime. In this way, the law may help spur not only fair AI and XAI, but potentially also sustainable AI (SAI).
translated by 谷歌翻译
即将开发我们呼叫所体现的系统的新一代越来越自主和自学习系统。在将这些系统部署到真实上下文中,我们面临各种工程挑战,因为它以有益的方式协调所体现的系统的行为至关重要,确保他们与我们以人为本的社会价值观的兼容性,并且设计可验证安全可靠的人类-Machine互动。我们正在争辩说,引发系统工程将来自嵌入到体现系统的温室,并确保动态联合的可信度,这种情况意识到的情境意识,意图,探索,探险,不断发展,主要是不可预测的,越来越自主的体现系统在不确定,复杂和不可预测的现实世界环境中。我们还识别了许多迫切性的系统挑战,包括可信赖的体现系统,包括强大而人为的AI,认知架构,不确定性量化,值得信赖的自融化以及持续的分析和保证。
translated by 谷歌翻译
期望与成功采用AI来创新和改善业务之间仍然存在很大的差距。由于深度学习的出现,AI的采用率更为复杂,因为它经常结合大数据和物联网,从而影响数据隐私。现有的框架已经确定需要专注于以人为中心的设计,结合技术和业务/组织的观点。但是,信任仍然是一个关键问题,需要从一开始就设计。拟议的框架从以人为本的设计方法扩展,强调和维持基于该过程的信任。本文提出了负责人工智能(AI)实施的理论框架。拟议的框架强调了敏捷共同创造过程的协同业务技术方法。目的是简化AI的采用过程来通过在整个项目中参与所有利益相关者来创新和改善业务,以便AI技术的设计,开发和部署与人合作而不是孤立。该框架对基于分析文献综述,概念框架设计和从业者的中介专业知识的负责人AI实施提出了新的观点。该框架强调在以人为以人为中心的设计和敏捷发展中建立和维持信任。这种以人为中心的方式与设计原则的隐私相符和启用。该技术和最终用户的创建者正在共同努力,为业务需求和人类特征定制AI解决方案。关于采用AI来协助医院计划的说明性案例研究将证明该拟议框架适用于现实生活中的应用。
translated by 谷歌翻译
通过机器学习的人工智能越来越多地用于数字社会。基于机器学习的解决方案带来了巨大的机会,从而创造了“软件2.0”,而且为工程界提供了巨大的挑战。由于数据科学家使用的实验方法在开发机器学习模型时,敏捷是一个重要的特征。在这个主题演讲中,我们讨论了两种当代开发现象,这是机器学习开发的基础,即笔记本界面和MLOPS。首先,我们提出了一种解决方案,可以通过支持对集成开发环境的简单过渡来解决笔记本电脑中工作的一些内在弱点。其次,我们通过在MLOPS语境中引入隐喻障碍和钢筋来提出AI系统的加强工程。基于机器学习的解决方案是动态的本质上,我们认为强化连续工程是质量保证明天可信赖的AI系统。
translated by 谷歌翻译
机器学习(ML)模型的开发不仅仅是软件开发的特殊情况(SD):ML模型即使没有以看似无法控制的方式直接人类互动,也可以获取属性并满足要求。但是,可以形式上描述基础过程。我们为ML定义了一个全面的SD流程模型,该模型涵盖了文献中描述的大多数任务和文物。除了生产必要的工件外,我们还专注于以规格的形式生成和验证拟合描述。我们强调即使在初步训练和测试后,即使在生命周期中进一步发展ML模型的重要性。因此,我们提供了各种交互点,具有标准SD过程,其中ML通常是封装的任务。此外,我们的SD过程模型允许将ML作为(元)优化问题提出。如果严格自动化,则可以用来实现自适应自主系统。最后,我们的SD流程模型具有时间的描述,可以推理ML开发过程中的进度。这可能会导致ML领域内形式方法的进一步应用。
translated by 谷歌翻译
机器学习(ML)研究出版物通常在GitHub上提供开源实现,使他们的受众可以复制,验证甚至扩展机器学习算法,数据集和元数据。但是,到目前为止,关于此类ML研究存储库的协作活动程度知之甚少,特别是(1)此类存储库从叉子获得贡献的程度,(2)此类贡献的性质(即类型,变化),以及(3)变更的性质,这些变化未归还给叉子,这可能代表了错过的机会。在本文中,我们对1,346毫升研究存储库及其67,369叉进行了验证,无论是定量还是定性(通过Hindle等人的构建代码更改的开创性分类法)。我们发现,尽管ML研究存储库是大量分叉的,但只有9%的叉子对叉子存储库进行了修改。后者的42%发送给家长存储库的更改,其中一半(52%)被父家存储库接受。我们对539个贡献的定性分析和378个本地(仅叉)变化,扩展了Hindle等人的分类法,其中一个与ML(数据)相关的新顶级变更类别和15个新的子类别,包括9个ML--特定的(输入数据,输出数据,程序数据,共享,变更评估,参数调整,性能,预处理,模型培训)。虽然没有由叉子造成的更改主要是涉及域特定于域的定制和本地实验(例如,参数调整),但原点ML存储库确实错过了不可忽视的15.4%文档更改的13.6%的功能更改,而功能更改的13.6%和11.4%的错误修复更改。本文中的发现将对从业者,研究人员,工具匠和教育者有用。
translated by 谷歌翻译