由于关键的至关重要的自动驾驶汽车(AV)将很快在我们的社会中普遍存在,因此最近在整个行业和学术界都提出了许多可信赖的AV部署的安全概念。然而,在适当的安全概念上达成共识仍然是一项艰巨的任务。在本文中,我们倡导使用汉密尔顿 - 雅各布(HJ)的可及性作为比较现有安全概念的统一数学框架,并通过该框架的元素提出了定制安全概念(从而将其适用性扩展到方案)与方案的方法,从而将其与方案相关。以数据驱动方式对代理行为的隐性期望。具体而言,我们表明(i)现有的主要安全概念可以嵌入到HJ可达性框架中,从而实现一种共同的语言来比较和对比建模假设,并且(ii)HJ可达性可以作为感应性偏见,以有效地理由,在一个学习环境,大约是两个关键但经常被忽视的安全方面:责任和上下文依赖性。
translated by 谷歌翻译
为了实现安全的自动驾驶汽车(AV)操作,至关重要的是,AV的障碍检测模块可以可靠地检测出构成安全威胁的障碍物(即是安全至关重要的)。因此,希望对感知系统的评估指标捕获对象的安全性 - 临界性。不幸的是,现有的感知评估指标倾向于对物体做出强烈的假设,而忽略了代理之间的动态相互作用,因此不能准确地捕获现实中的安全风险。为了解决这些缺点,我们通过考虑自我车辆和现场障碍之间的闭环动态相互作用来引入互动障碍感知障碍检测评估度量指标。通过从最佳控制理论借用现有理论,即汉密尔顿 - 雅各比的可达性,我们提出了一种可构造``安全区域''的计算障碍方法:一个国家空间中的一个区域,该区域定义了安全 - 关键障碍为了定义安全目的的位置指标。我们提出的安全区已在数学上完成,并且可以轻松计算以反映各种安全要求。使用Nuscenes检测挑战排行榜的现成检测算法,我们证明我们的方法是计算轻量级,并且可以更好地捕获与基线方法更好地捕获关键的安全感知错误。
translated by 谷歌翻译
Robots such as autonomous vehicles and assistive manipulators are increasingly operating in dynamic environments and close physical proximity to people. In such scenarios, the robot can leverage a human motion predictor to predict their future states and plan safe and efficient trajectories. However, no model is ever perfect -- when the observed human behavior deviates from the model predictions, the robot might plan unsafe maneuvers. Recent works have explored maintaining a confidence parameter in the human model to overcome this challenge, wherein the predicted human actions are tempered online based on the likelihood of the observed human action under the prediction model. This has opened up a new research challenge, i.e., \textit{how to compute the future human states online as the confidence parameter changes?} In this work, we propose a Hamilton-Jacobi (HJ) reachability-based approach to overcome this challenge. Treating the confidence parameter as a virtual state in the system, we compute a parameter-conditioned forward reachable tube (FRT) that provides the future human states as a function of the confidence parameter. Online, as the confidence parameter changes, we can simply query the corresponding FRT, and use it to update the robot plan. Computing parameter-conditioned FRT corresponds to an (offline) high-dimensional reachability problem, which we solve by leveraging recent advances in data-driven reachability analysis. Overall, our framework enables online maintenance and updates of safety assurances in human-robot interaction scenarios, even when the human prediction model is incorrect. We demonstrate our approach in several safety-critical autonomous driving scenarios, involving a state-of-the-art deep learning-based prediction model.
translated by 谷歌翻译
由于早期的工作和新算法的开发人员,追溯式,本文使用可达性分析来验证跟随算法的安全性,这是一种用于阻尼停止和转移流量波的控制器。通过我们的物理平台收集的超过1100英里的驾驶数据,我们通过将其与人类驾驶行为进行比较来验证我们的分析结果。跟随控制器已经证明以低速抑制停止和转向流量波,但之前对其相对安全的分析仅限于加速度的上下界限。为了在先前的分析上进行扩展,可以使用可达性分析来研究其最初测试的速度的安全性,并且还处于更高的速度。示出了两种具有不同标准的安全分析配方:基于距离和基于时间的距离。跟随基于距离的标准被认为是安全的。然而,仿真结果表明,追踪者不代表人类驱动程序 - 它在车辆后面太紧密,特别是人类将认为是不安全的。另一方面,在基于前沿的安全分析的情况下,跟随不再被认为是安全的。提出了一种修改的追踪,以满足基于时间的安全标准。拟议的追随者的仿真结果表明,其响应能够更好地代表人类驾驶员行为。
translated by 谷歌翻译
这项正在进行的工作考虑了在多助理系统中自主行驶领域的可达性的安全分析。我们为速度游戏进行差异游戏后的车辆的安全问题,并研究不同的建模策略如何产生非常不同的行为,而不管其他情况策略的有效性如何。鉴于现实生活驾驶场景的性质,我们提出了我们的制定的建模策略,该策略占代理人之间的微妙互动,并将其Hamiltonian结果与其他基线进行比较。我们的配方鼓励降低汉密尔顿 - 雅各比安全性分析的保守性,以便在导航期间提供更好的安全保障。
translated by 谷歌翻译
责任敏感安全(RSS)是一种自动驾驶系统安全性(AD)安全的方法。它旨在介绍数学配制的安全规则,并遵守该规则,以保证避免碰撞作为数学定理。然而,尽管强调了数学和逻辑保证,但RSS的逻辑基础和形式化在很大程度上是一个未开发的研究主题。在本文中,我们介绍了RSS的介绍,我们期望这将在不同的研究社区之间桥接,并为RSS的逻辑理论,其数学形式化以及实际使用的软件工具铺平道路。
translated by 谷歌翻译
在公共道路上大规模的自动车辆部署有可能大大改变当今社会的运输方式。尽管这种追求是在几十年前开始的,但仍有公开挑战可靠地确保此类车辆在开放环境中安全运行。尽管功能安全性是一个完善的概念,但测量车辆行为安全的问题仍然需要研究。客观和计算分析交通冲突的一种方法是开发和利用所谓的关键指标。在与自动驾驶有关的各种应用中,当代方法利用了关键指标的潜力,例如用于评估动态风险或过滤大型数据集以构建方案目录。作为系统地选择适当的批判性指标的先决条件,我们在自动驾驶的背景下广泛回顾了批判性指标,其属性及其应用的现状。基于这篇综述,我们提出了一种适合性分析,作为一种有条不紊的工具,可以由从业者使用。然后,可以利用提出的方法和最新审查的状态来选择涵盖应用程序要求的合理的测量工具,如分析的示例性执行所证明。最终,高效,有效且可靠的衡量自动化车辆安全性能是证明其可信赖性的关键要求。
translated by 谷歌翻译
对自动驾驶的运动计划的安全保证通常涉及在环境中无法控制的参与者(例如道路上的人类驱动的车辆)的任何动作下进行无碰撞的轨迹。结果,他们通常对此类参与者的行为采用保守的束缚,例如可达性分析。我们指出,规划轨迹严格避免全部可覆盖区域是不必要的,而且过于限制,因为将来观察环境将使我们能够修剪大多数。无视这种对未来更新的能力的能力可以禁止对人类驾驶员轻松导航的方案的解决方案。我们建议通过新颖的安全框架,全面的反应性安全来解释自动驾驶汽车对未来环境的反应。在模拟中验证了几种城市驾驶场景,例如未受保护的左转弯和车道合并,所得的计划算法称为反应性ILQR,表现出强大的谈判能力和更好的安全性。
translated by 谷歌翻译
自动驾驶汽车的一个主要挑战是安全,平稳地与其他交通参与者进行互动。处理此类交通交互的一种有希望的方法是为自动驾驶汽车配备与感知的控制器(IACS)。这些控制器预测,周围人类驾驶员将如何根据驾驶员模型对自动驾驶汽车的行为做出响应。但是,很少验证IACS中使用的驱动程序模型的预测有效性,这可能会限制IACS在简单的模拟环境之外的交互功能。在本文中,我们认为,除了评估IAC的互动能力外,还应在自然的人类驾驶行为上验证其潜在的驱动器模型。我们为此验证提出了一个工作流程,其中包括基于方案的数据提取和基于人为因素文献的两阶段(战术/操作)评估程序。我们在一项案例研究中证明了该工作流程,该案例研究对现有IAC复制的基于反向的基于学习的驱动程序模型。该模型仅在40%的预测中显示出正确的战术行为。该模型的操作行为与观察到的人类行为不一致。案例研究表明,有原则的评估工作流程是有用和需要的。我们认为,我们的工作流将支持为将来的自动化车辆开发适当的驾驶员模型。
translated by 谷歌翻译
我们研究了覆盖的阶段 - 避免多个代理的动态游戏,其中多个代理相互作用,并且每种希望满足不同的目标条件,同时避免失败状态。 Reach-避免游戏通常用于表达移动机器人运动计划中发现的安全关键最优控制问题。虽然这些运动计划问题存在各种方法,但我们专注于找到时间一致的解决方案,其中计划未来的运动仍然是最佳的,尽管先前的次优行动。虽然摘要,时间一致性封装了一个非常理想的财产:即使机器人早期从计划发出的机器人的运动发散,即,由于例如内在的动态不确定性或外在环境干扰,即使机器人的运动分歧,时间一致的运动计划也保持最佳。我们的主要贡献是一种计算 - 避免多种代理的算法算法,避免呈现时间一致的解决方案。我们展示了我们在两位和三位玩家模拟驾驶场景中的方法,其中我们的方法为所有代理商提供了安全控制策略。
translated by 谷歌翻译
游戏理论运动计划者是控制多个高度交互式机器人系统的有效解决方案。大多数现有的游戏理论规划师不切实际地假设所有代理都可以使用先验的目标功能知识。为了解决这个问题,我们提出了一个容忍度的退缩水平游戏理论运动计划者,该计划者利用了与意图假设的可能性相互交流。具体而言,机器人传达其目标函数以结合意图。离散的贝叶斯过滤器旨在根据观察到的轨迹与传达意图的轨迹之间的差异来实时推断目标。在仿真中,我们考虑了三种安全至关重要的自主驾驶场景,即超车,车道交叉和交叉点,以证明我们计划者在存在通信网络中存在错误的传输情况下利用替代意图假设来产生安全轨迹的能力。
translated by 谷歌翻译
然而,由于各种交通/道路结构方案以及人类驾驶员行为的长时间分布,自动驾驶的感应,感知和本地化取得了重大进展,因此,对于智能车辆来说,这仍然是一个持开放态度的挑战始终知道如何在有可用的传感 /感知 /本地化信息的道路上做出和执行最佳决定。在本章中,我们讨论了人工智能,更具体地说,强化学习如何利用运营知识和安全反射来做出战略性和战术决策。我们讨论了一些与强化学习解决方案的鲁棒性及其对自动驾驶驾驶策略的实践设计有关的具有挑战性的问题。我们专注于在高速公路上自动驾驶以及增强学习,车辆运动控制和控制屏障功能的整合,从而实现了可靠的AI驾驶策略,可以安全地学习和适应。
translated by 谷歌翻译
离线强化学习(RL)为从离线数据提供学习决策的框架,因此构成了现实世界应用程序作为自动驾驶的有希望的方法。自动驾驶车辆(SDV)学习策略,这甚至可能甚至优于次优数据集中的行为。特别是在安全关键应用中,作为自动化驾驶,解释性和可转换性是成功的关键。这激发了使用基于模型的离线RL方法,该方法利用规划。然而,目前的最先进的方法往往忽视了多种子体系统随机行为引起的溶液不确定性的影响。这项工作提出了一种新的基于不确定感知模型的离线强化学习利用规划(伞)的新方法,其解决了以可解释的基于学习的方式共同的预测,规划和控制问题。训练有素的动作调节的随机动力学模型捕获了交通场景的独特不同的未来演化。分析为我们在挑战自动化驾驶模拟中的效力和基于现实世界的公共数据集的方法提供了经验证据。
translated by 谷歌翻译
我们解决了由具有不同驱动程序行为的道路代理人填充的密集模拟交通环境中的自我车辆导航问题。由于其异构行为引起的代理人的不可预测性,这种环境中的导航是挑战。我们提出了一种新的仿真技术,包括丰富现有的交通模拟器,其具有与不同程度的侵略性程度相对应的行为丰富的轨迹。我们在驾驶员行为建模算法的帮助下生成这些轨迹。然后,我们使用丰富的模拟器培训深度加强学习(DRL)策略,包括一组高级车辆控制命令,并在测试时间使用此策略来执行密集流量的本地导航。我们的政策隐含地模拟了交通代理商之间的交互,并计算了自助式驾驶员机动,例如超速,超速,编织和突然道路变化的激进驾驶员演习的安全轨迹。我们增强的行为丰富的模拟器可用于生成由对应于不同驱动程序行为和流量密度的轨迹组成的数据集,我们的行为的导航方案可以与最先进的导航算法相结合。
translated by 谷歌翻译
安全与其他交通参与者的互动是自动驾驶的核心要求之一,尤其是在交叉点和遮挡中。大多数现有的方法都是为特定场景设计的,需要大量的人工劳动参数调整,以应用于不同情况。为了解决这个问题,我们首先提出了一个基于学习的交互点模型(IPM),该模型描述了代理与保护时间和交互优先级之间的相互作用以统一的方式。我们将提出的IPM进一步整合到一个新颖的计划框架中,通过在高度动态的环境中的全面模拟来证明其有效性和鲁棒性。
translated by 谷歌翻译
We develop a hierarchical controller for head-to-head autonomous racing. We first introduce a formulation of a racing game with realistic safety and fairness rules. A high-level planner approximates the original formulation as a discrete game with simplified state, control, and dynamics to easily encode the complex safety and fairness rules and calculates a series of target waypoints. The low-level controller takes the resulting waypoints as a reference trajectory and computes high-resolution control inputs by solving an alternative formulation with simplified objectives and constraints. We consider two approaches for the low-level planner, constructing two hierarchical controllers. One approach uses multi-agent reinforcement learning (MARL), and the other solves a linear-quadratic Nash game (LQNG) to produce control inputs. The controllers are compared against three baselines: an end-to-end MARL controller, a MARL controller tracking a fixed racing line, and an LQNG controller tracking a fixed racing line. Quantitative results show that the proposed hierarchical methods outperform their respective baseline methods in terms of head-to-head race wins and abiding by the rules. The hierarchical controller using MARL for low-level control consistently outperformed all other methods by winning over 88% of head-to-head races and more consistently adhered to the complex racing rules. Qualitatively, we observe the proposed controllers mimicking actions performed by expert human drivers such as shielding/blocking, overtaking, and long-term planning for delayed advantages. We show that hierarchical planning for game-theoretic reasoning produces competitive behavior even when challenged with complex rules and constraints.
translated by 谷歌翻译
随着自动组件比例越来越多的新兴车辆系统提供了最佳控制的机会,以减轻交通拥堵和提高效率。最近有兴趣将深入增强学习(DRL)应用于这些非线性动力学系统,以自动设计有效的控制策略。尽管DRL是无模型的概念优势,但研究通常仍依赖于对特定车辆系统的艰苦训练设置。这是对各种车辆和机动性系统有效分析的关键挑战。为此,本文贡献了一种简化的用于车辆微仿真的方法,并以最少的手动设计发现了高性能控制策略。提出了一种可变的代理,多任务方法,以优化车辆部分观察到的马尔可夫决策过程。该方法在混合自治交通系统上进行了实验验证,该系统是自动化的。在六种不同的开放或封闭交通系统的所有配置中都可以观察到经验改进,通常比人类驾驶基线的15-60%。该研究揭示了许多紧急行为类似于缓解波浪,交通信号传导和坡道计量。最后,对新兴行为进行了分析,以产生可解释的控制策略,这些控制策略已通过学习的控制策略进行了验证。
translated by 谷歌翻译
密集的安全导航,城市驾驶环境仍然是一个开放的问题和一个活跃的研究领域。与典型的预测 - 计划方法不同,游戏理论规划考虑了一辆车的计划如何影响另一个车辆的行为。最近的工作表明,在具有非线性目标和约束的普通和游戏中找到当地纳什均衡所需的时间重大改进。当狡辩到驾驶时,这些作品假设场景中的所有车辆一起玩游戏,这可能导致密集流量的难治性计算时间。我们通过假设代理商在他们的观察附近玩游戏的代理商来制定分散的游戏理论规划方法,我们认为我们认为是人类驾驶的更合理的假设。游戏是并行播放的,以进行交互图的所有强烈连接的组件,显着减少了每个游戏中的玩家和约束的数量,从而减少了规划所需的时间。我们证明我们的方法可以通过比较智能驱动程序模型和集中式游戏理论规划在互动数据集中的环形交叉路口时,通过比较智能驱动程序模型和集中式游戏理论规划的性能来实现无碰撞,高效的驾驶。我们的实现可在http://github.com/sisl/decnashplanning获取。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
相应地预测周围交通参与者的未来状态,并计划安全,平稳且符合社会的轨迹对于自动驾驶汽车至关重要。当前的自主驾驶系统有两个主要问题:预测模块通常与计划模块解耦,并且计划的成本功能很难指定和调整。为了解决这些问题,我们提出了一个端到端的可区分框架,该框架集成了预测和计划模块,并能够从数据中学习成本函数。具体而言,我们采用可区分的非线性优化器作为运动计划者,该运动计划将神经网络给出的周围剂的预测轨迹作为输入,并优化了自动驾驶汽车的轨迹,从而使框架中的所有操作都可以在框架中具有可观的成本,包括成本功能权重。提出的框架经过大规模的现实驾驶数据集进行了训练,以模仿整个驾驶场景中的人类驾驶轨迹,并在开环和闭环界面中进行了验证。开环测试结果表明,所提出的方法的表现优于各种指标的基线方法,并提供以计划为中心的预测结果,从而使计划模块能够输出接近人类的轨迹。在闭环测试中,提出的方法表明能够处理复杂的城市驾驶场景和鲁棒性,以抵抗模仿学习方法所遭受的分配转移。重要的是,我们发现计划和预测模块的联合培训比在开环和闭环测试中使用单独的训练有素的预测模块进行计划要比计划更好。此外,消融研究表明,框架中的可学习组件对于确保计划稳定性和性能至关重要。
translated by 谷歌翻译