In computer-aided drug discovery (CADD), virtual screening (VS) is used for identifying the drug candidates that are most likely to bind to a molecular target in a large library of compounds. Most VS methods to date have focused on using canonical compound representations (e.g., SMILES strings, Morgan fingerprints) or generating alternative fingerprints of the compounds by training progressively more complex variational autoencoders (VAEs) and graph neural networks (GNNs). Although VAEs and GNNs led to significant improvements in VS performance, these methods suffer from reduced performance when scaling to large virtual compound datasets. The performance of these methods has shown only incremental improvements in the past few years. To address this problem, we developed a novel method using multiparameter persistence (MP) homology that produces topological fingerprints of the compounds as multidimensional vectors. Our primary contribution is framing the VS process as a new topology-based graph ranking problem by partitioning a compound into chemical substructures informed by the periodic properties of its atoms and extracting their persistent homology features at multiple resolution levels. We show that the margin loss fine-tuning of pretrained Triplet networks attains highly competitive results in differentiating between compounds in the embedding space and ranking their likelihood of becoming effective drug candidates. We further establish theoretical guarantees for the stability properties of our proposed MP signatures, and demonstrate that our models, enhanced by the MP signatures, outperform state-of-the-art methods on benchmark datasets by a wide and highly statistically significant margin (e.g., 93% gain for Cleves-Jain and 54% gain for DUD-E Diverse dataset).
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
Molecular machine learning has been maturing rapidly over the last few years.Improved methods and the presence of larger datasets have enabled machine learning algorithms to make increasingly accurate predictions about molecular properties. However, algorithmic progress has been limited due to the lack of a standard benchmark to compare the efficacy of proposed methods; most new algorithms are benchmarked on different datasets making it challenging to gauge the quality of proposed methods. This work introduces MoleculeNet, a large scale benchmark for molecular machine learning. MoleculeNet curates multiple public datasets, establishes metrics for evaluation, and offers high quality open-source implementations of multiple previously proposed molecular featurization and learning algorithms (released as part of the DeepChem
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
鉴定新型药物靶标相互作用(DTI)是药物发现中的关键和速率限制步骤。虽然已经提出了深入学习模型来加速识别过程,但我们表明最先进的模型无法概括到新颖(即,从未见过的)结构上。我们首先揭示负责此缺点的机制,展示模型如何依赖于利用蛋白质 - 配体二分网络拓扑的捷径,而不是学习节点特征。然后,我们介绍AI-BIND,这是一个与无监督的预训练的基于网络的采样策略相结合的管道,使我们能够限制注释不平衡并改善新型蛋白质和配体的结合预测。我们通过预测具有结合亲和力的药物和天然化合物对SARS-COV-2病毒蛋白和相关的人蛋白质来说明Ai-reat的值。我们还通过自动扩展模拟和与最近的实验证据进行比较来验证这些预测。总体而言,AI-Bind提供了一种强大的高通量方法来识别药物目标组合,具有成为药物发现中强大工具的可能性。
translated by 谷歌翻译
在过去十年中,图形内核引起了很多关注,并在结构化数据上发展成为一种快速发展的学习分支。在过去的20年中,该领域发生的相当大的研究活动导致开发数十个图形内核,每个图形内核都对焦于图形的特定结构性质。图形内核已成功地成功地在广泛的域中,从社交网络到生物信息学。本调查的目标是提供图形内核的文献的统一视图。特别是,我们概述了各种图形内核。此外,我们对公共数据集的几个内核进行了实验评估,并提供了比较研究。最后,我们讨论图形内核的关键应用,并概述了一些仍有待解决的挑战。
translated by 谷歌翻译
Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make datadriven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph-atoms, bonds, distances, etc.-which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.
translated by 谷歌翻译
生物医学网络是与疾病网络的蛋白质相互作用的普遍描述符,从蛋白质相互作用,一直到医疗保健系统和科学知识。随着代表学习提供强大的预测和洞察的显着成功,我们目睹了表现形式学习技术的快速扩展,进入了这些网络的建模,分析和学习。在这篇综述中,我们提出了一个观察到生物学和医学中的网络长期原则 - 而在机器学习研究中经常出口 - 可以为代表学习提供概念基础,解释其当前的成功和限制,并告知未来进步。我们综合了一系列算法方法,即在其核心利用图形拓扑到将网络嵌入到紧凑的向量空间中,并捕获表示陈述学习证明有用的方式的广度。深远的影响包括鉴定复杂性状的变异性,单细胞的异心行为及其对健康的影响,协助患者的诊断和治疗以及制定安全有效的药物。
translated by 谷歌翻译
在三维分子结构上运行的计算方法有可能解决生物学和化学的重要问题。特别地,深度神经网络的重视,但它们在生物分子结构域中的广泛采用受到缺乏系统性能基准或统一工具包的限制,用于与分子数据相互作用。为了解决这个问题,我们呈现Atom3D,这是一个新颖的和现有的基准数据集的集合,跨越几个密钥的生物分子。我们为这些任务中的每一个实施多种三维分子学习方法,并表明它们始终如一地提高了基于单维和二维表示的方法的性能。结构的具体选择对于性能至关重要,具有涉及复杂几何形状的任务的三维卷积网络,在需要详细位置信息的系统中表现出良好的图形网络,以及最近开发的设备越多的网络显示出显着承诺。我们的结果表明,许多分子问题符合三维分子学习的增益,并且有可能改善许多仍然过分曝光的任务。为了降低进入并促进现场进一步发展的障碍,我们还提供了一套全面的DataSet处理,模型培训和在我们的开源ATOM3D Python包中的评估工具套件。所有数据集都可以从https://www.atom3d.ai下载。
translated by 谷歌翻译
人工智能(AI)在过去十年中一直在改变药物发现的实践。各种AI技术已在广泛的应用中使用,例如虚拟筛选和药物设计。在本调查中,我们首先概述了药物发现,并讨论了相关的应用,可以减少到两个主要任务,即分子性质预测和分子产生。然后,我们讨论常见的数据资源,分子表示和基准平台。此外,为了总结AI在药物发现中的进展情况,我们介绍了在调查的论文中包括模型架构和学习范式的相关AI技术。我们预计本调查将作为有兴趣在人工智能和药物发现界面工作的研究人员的指南。我们还提供了GitHub存储库(HTTPS:///github.com/dengjianyuan/survey_survey_au_drug_discovery),其中包含文件和代码,如适用,作为定期更新的学习资源。
translated by 谷歌翻译
近年来,变压器模型的引入引发了自然语言处理(NLP)的革命。伯特(Bert)是仅使用注意机制的第一批文本编码者之一,没有任何复发部分来实现许多NLP任务的最新结果。本文使用拓扑数据分析介绍了文本分类器。我们将BERT的注意图转换为注意图作为该分类器的唯一输入。该模型可以解决诸如将垃圾邮件与HAM消息区分开的任务,认识到语法正确的句子,或将电影评论评估为负面还是正面。它与BERT基线相当表现,并在某些任务上表现优于它。此外,我们提出了一种新方法,以减少拓扑分类器考虑的BERT注意力头的数量,这使我们能够修剪从144个下降到只有10个,而不会降低性能。我们的工作还表明,拓扑模型比原始的BERT模型表现出对对抗性攻击的鲁棒性,该模型在修剪过程中维持。据我们所知,这项工作是第一个在NLP背景下以对抗性攻击的基于拓扑的模型。
translated by 谷歌翻译
虽然最近在许多科学领域都变得无处不在,但对其评估的关注较少。对于分子生成模型,最先进的是孤立或与其输入有关的输出。但是,它们的生物学和功能特性(例如配体 - 靶标相互作用)尚未得到解决。在这项研究中,提出了一种新型的生物学启发的基准,用于评估分子生成模型。具体而言,设计了三个不同的参考数据集,并引入了与药物发现过程直接相关的一组指标。特别是我们提出了一个娱乐指标,将药物目标亲和力预测和分子对接应用作为评估生成产量的互补技术。虽然所有三个指标均在测试的生成模型中均表现出一致的结果,但对药物目标亲和力结合和分子对接分数进行了更详细的比较,表明单峰预测器可能会导致关于目标结合在分子水平和多模式方法的错误结论,而多模式的方法是错误的结论。因此优选。该框架的关键优点是,它通过明确关注配体 - 靶标相互作用,将先前的物理化学域知识纳入基准测试过程,从而创建了一种高效的工具,不仅用于评估分子生成型输出,而且还用于丰富富含分子生成的输出。一般而言,药物发现过程。
translated by 谷歌翻译
拓扑数据分析(TDA)的主要挑战之一是从机器学习算法直接可用的持久图中提取功能。实际上,持久性图是R2中的本质上(多级)点,并且不能以直接的方式视为向量。在本文中,我们介绍了持平性器,这是一个接受持久图作为输入的第一变压器神经网络架构。坚持不懈的体系结构显着优于古典合成基准数据集上以前的拓扑神经网络架构。此外,它满足了通用近似定理。这使我们能够介绍一种用于拓扑机学习的第一解释方法,我们在两个示例中探讨。
translated by 谷歌翻译
适当地表示数据库中的元素,以便可以准确匹配查询是信息检索的核心任务;最近,通过使用各种指标将数据库的图形结构嵌入层次结构的方式中来实现。持久性同源性是一种在拓扑数据分析中常用的工具,能够严格地以其层次结构和连接结构来表征数据库。计算各种嵌入式数据集上的持续同源性表明,一些常用的嵌入式无法保留连接性。我们表明,那些成功保留数据库拓扑的嵌入通过引入两种扩张不变的比较措施来捕获这种效果,尤其是解决了对流形的度量扭曲问题。我们为它们的计算提供了一种算法,该算法大大降低了现有方法的时间复杂性。我们使用这些措施来执行基于拓扑的信息检索的第一个实例,并证明了其在持久同源性的标准瓶颈距离上的性能提高。我们在不同数据品种的数据库中展示了我们的方法,包括文本,视频和医学图像。
translated by 谷歌翻译
我们向高吞吐量基准介绍了用于材料和分子数据集的化学系统的多种表示的高吞吐量基准的机器学习(ML)框架。基准测试方法的指导原理是通过将模型复杂性限制在简单的回归方案的同时,在执行最佳ML实践的同时将模型复杂性限制为简单的回归方案,允许通过沿着同步的列车测试分裂的系列进行学习曲线来评估学习进度来评估原始描述符性能。结果模型旨在为未来方法开发提供通知的基线,旁边指示可以学习给定的数据集多么容易。通过对各种物理化学,拓扑和几何表示的培训结果的比较分析,我们介绍了这些陈述的相对优点以及它们的相互关联。
translated by 谷歌翻译
持久图(PDS)通常以同源性类别的死亡和出生为特征,以提供图形结构的拓扑表示,通常在机器学习任务中有用。先前的作品依靠单个图形签名来构建PD。在本文中,我们探讨了多尺度图标志家族的使用,以增强拓扑特征的鲁棒性。我们提出了一个深度学习体系结构来处理该集合的输入。基准图分类数据集上的实验表明,与使用图神经网络的最新方法相比,我们所提出的架构优于其他基于同源的方法,并实现其他基于同源的方法,并实现竞争性能。此外,我们的方法可以轻松地应用于大尺寸的输入图,因为它不会遭受有限的可伸缩性,这对于图内核方法可能是一个问题。
translated by 谷歌翻译
持续的同源性(PH)是拓扑数据分析中最流行的方法之一。尽管PH已用于许多不同类型的应用程序中,但其成功背后的原因仍然难以捉摸。特别是,尚不知道哪种类别的问题最有效,或者在多大程度上可以检测几何或拓扑特征。这项工作的目的是确定pH在数据分析中比其他方法更好甚至更好的问题。我们考虑三个基本形状分析任务:从形状采样的2D和3D点云中检测孔数,曲率和凸度。实验表明,pH在这些任务中取得了成功,超过了几个基线,包括PointNet,这是一个精确地受到点云的属性启发的体系结构。此外,我们观察到,pH对于有限的计算资源和有限的培训数据以及分布外测试数据,包括各种数据转换和噪声,仍然有效。
translated by 谷歌翻译
我们考虑了$ d $维图像的新拓扑效率化,该图像通过在计算持久性之前与各种过滤器进行卷积。将卷积滤波器视为图像中的图案,结果卷积的持久图描述了图案在整个图像中分布的方式。我们称之为卷积持久性的管道扩展了拓扑结合图像数据中模式的能力。的确,我们证明(通常说)对于任何两个图像,人们都可以找到某些过滤器,它们会为其产生不同的持久图,以便给定图像的所有可能的卷积持久性图的收集是一个不变的不变性。通过表现出卷积的持久性是另一种拓扑不变的持续性副学变换的特殊情况,这证明了这一点。卷积持久性的其他优势是提高噪声的稳定性和鲁棒性,对数据依赖性矢量化的更大灵活性以及对具有较大步幅向量的卷积的计算复杂性降低。此外,我们还有一套实验表明,即使人们使用随机过滤器并通过仅记录其总持久性,卷积大大提高了持久性的预测能力,即使一个人使用随机过滤器并将结果图进行量化。
translated by 谷歌翻译
最近有一项激烈的活动在嵌入非常高维和非线性数据结构的嵌入中,其中大部分在数据科学和机器学习文献中。我们分四部分调查这项活动。在第一部分中,我们涵盖了非线性方法,例如主曲线,多维缩放,局部线性方法,ISOMAP,基于图形的方法和扩散映射,基于内核的方法和随机投影。第二部分与拓扑嵌入方法有关,特别是将拓扑特性映射到持久图和映射器算法中。具有巨大增长的另一种类型的数据集是非常高维网络数据。第三部分中考虑的任务是如何将此类数据嵌入中等维度的向量空间中,以使数据适合传统技术,例如群集和分类技术。可以说,这是算法机器学习方法与统计建模(所谓的随机块建模)之间的对比度。在论文中,我们讨论了两种方法的利弊。调查的最后一部分涉及嵌入$ \ mathbb {r}^ 2 $,即可视化中。提出了三种方法:基于第一部分,第二和第三部分中的方法,$ t $ -sne,UMAP和大节。在两个模拟数据集上进行了说明和比较。一个由嘈杂的ranunculoid曲线组成的三胞胎,另一个由随机块模型和两种类型的节点产生的复杂性的网络组成。
translated by 谷歌翻译
最近,基于深度神经网络(DNN)的药物 - 目标相互作用(DTI)模型以高精度突出显示,具有实惠的计算成本。然而,模型在硅药物发现的实践中仍然是一个具有挑战性的问题。我们提出了两项​​关键策略,以提高DTI模型的概括。首先是通过用神经网络参数化的物理通知方程来预测原子原子对相互作用,并提供蛋白质 - 配体复合物作为其总和的总结合亲和力。通过增强更广泛的绑定姿势和配体来培训数据,我们进一步改善了模型泛化。我们验证了我们的模型,PIGNET,在评分职能(CASF)2016的比较评估中,展示了比以前的方法更优于对接和筛选力。我们的物理信息策略还通过可视化配体副结构的贡献来解释预测的亲和力,为进一步配体优化提供了见解。
translated by 谷歌翻译