传统的静态知识图形在关系数据中的模型实体作为节点,由特定关系类型的边缘连接。然而,信息和知识不断发展,并且时间动态出现,预计会影响未来的情况。在时间知识图中,通过用时间戳或时间范围配备每个边缘,将时间信息集成到图表中。已经引入了基于嵌入的方法,以便在时间知识图上引入链接预测,但它们主要缺乏可解释性和可理解的推理链。特别是,它们通常不设计用于处理涉及未来时间戳的链路预测 - 事件预测。我们解决了对时间知识图表链接预测的任务,并介绍了一种基于通过时间随机散步提取的时间逻辑规则的可解释的框架。我们在三个基准数据集中比较Tlogic与最先进的基线,并显示出更好的整体性能,而我们的方法还提供了保留时间一致性的解释。此外,与基于最先进的嵌入的方法相比,TLOGIC在具有普通词汇表的相关数据集转移到相关的数据集中,TLOGIC在归纳规则中运行良好。
translated by 谷歌翻译
归纳逻辑推理是图上的基本任务之一,该任务旨在从数据中概括模式。已经针对传统图形数据集(例如知识图(KG))进行了广泛研究此任务,并具有代表性的技术,例如归纳逻辑编程(ILP)。现有的ILP方法通常假设从具有静态事实和二进制关系的KG学习。除KGS外,图形结构在其他应用程序中广泛存在,例如视频说明,场景图和程序执行。虽然感应性逻辑推理对这些应用也有益,但将ILP应用于相应的图是非平凡的:它们比KGS更复杂,KG通常涉及时间戳和N-元素关系,实际上是一种具有时间事件的超透明的类型。在这项工作中,我们研究了两个这样的应用,并建议用时间间隔代表它们为超图。为了在此图上进行推理,我们提出了遍历此超图的多启动随机B-Walk。将其与路径矛盾算法相结合,我们提出了一种有效的向后链接ILP方法,该方法通过从时间和关系数据中概括来学习逻辑规则。
translated by 谷歌翻译
Temporal knowledge graph, serving as an effective way to store and model dynamic relations, shows promising prospects in event forecasting. However, most temporal knowledge graph reasoning methods are highly dependent on the recurrence or periodicity of events, which brings challenges to inferring future events related to entities that lack historical interaction. In fact, the current moment is often the combined effect of a small part of historical information and those unobserved underlying factors. To this end, we propose a new event forecasting model called Contrastive Event Network (CENET), based on a novel training framework of historical contrastive learning. CENET learns both the historical and non-historical dependency to distinguish the most potential entities that can best match the given query. Simultaneously, it trains representations of queries to investigate whether the current moment depends more on historical or non-historical events by launching contrastive learning. The representations further help train a binary classifier whose output is a boolean mask to indicate related entities in the search space. During the inference process, CENET employs a mask-based strategy to generate the final results. We evaluate our proposed model on five benchmark graphs. The results demonstrate that CENET significantly outperforms all existing methods in most metrics, achieving at least $8.3\%$ relative improvement of Hits@1 over previous state-of-the-art baselines on event-based datasets.
translated by 谷歌翻译
对于知识图形完成,存在两种主要类型的预测模型:基于图形嵌入的一个,以及基于关系路径规则诱导。它们具有不同的优缺点。为了利用这两种类型,最近提出了混合模型。其中一个混合模型,uniker,交替通过关系路径规则增强培训数据并列进嵌入模型。尽管其预测准确性很高,但它不充分利用关系路径规则,因为它忽略了低置信度规则,以保持增强数据的质量。为了缓解此限制,我们通过关系路径规则和基于置信性的增强数据提出转换数据增强。结果和分析表明,我们所提出的方法通过增强包括与它们类似的真实答案或实体的数据来有效提高嵌入模型的性能。
translated by 谷歌翻译
链接预测是图形上非常基本的任务。在本文中受到传统路径的方法的启发,我们提出了一种基于链路预测路径的一般和灵活的表示学习框架。具体地,我们将一对节点的表示定义为所有路径表示的广义和,每个路径表示为路径中的边缘表示的广义乘积。通过贝尔曼-Ford算法来解决最短路径问题,我们表明,所提出的路径配方可以通过广义的Bellman-Ford算法有效地解决。为了进一步提高路径制构的能力,我们提出了神经贝尔曼 - 福特网络(NBFNET),这是一种全图神经网络框架,其解决了通过广义Bellman-Ford算法中的学习运算符的路径制定。 NBFNET使用3个神经元件,即指示器,消息和聚合函数参数,即分别对应于边界条件,乘法运算符和求和运算符。 NBFNET非常一般,涵盖许多传统的基于路径的方法,并且可以应用于转导和归纳设置的同质图和多关系图(例如,知识图表)。两个均匀图表和知识图表的实验表明,所提出的NBFNET在转换和归纳设置中的大幅度优于现有方法,实现了新的最先进的结果。
translated by 谷歌翻译
多跳跃逻辑推理是在知识图(KGS)上学习领域的一个已建立问题。它涵盖了单跳连接预测以及其他更复杂的逻辑查询类型。现有的算法仅在经典的三重基图上运行,而现代KG经常采用超相关的建模范式。在此范式中,键入的边缘可能具有几对键值对,称为限定符,可为事实提供细粒度的环境。在查询中,此上下文修改了关系的含义,通常会减少答案集。经常在现实世界中的应用程序中观察到超相关的查询,并且现有的近似查询答案方法无法使用预选赛对。在这项工作中,我们弥合了这一差距,并将多跳的推理问题扩展到了超级关系的KG,允许解决这一新类型的复杂查询。在图形神经网络和查询嵌入技术的最新进展之下,我们研究了如何嵌入和回答超相关的连词查询。除此之外,我们还提出了一种回答此类查询并在我们的实验中证明的方法,即预选赛可以改善对各种查询模式的查询回答。
translated by 谷歌翻译
虽然知识图表包含各种实体的丰富语义知识和它们之间的关系信息,但时间知识图(TKG)进一步表明实体随时间的相互作用。为了研究如何更好地模范TKG,自动时间知识图完成(TKGC)已经获得了很大的兴趣。最近的TKGC方法旨在整合先进的深度学习技术,例如注意机制和变压器,提高模型性能。然而,我们发现与采用各种复杂模块相比,更有利的是更好地利用沿时间轴的全部时间信息。在本文中,我们为TKGC提出了一个简单但强大的图形编码器Targcn。 targcn是参数效率,它广泛利用了整个时间上下文的信息。我们在三个基准数据集执行实验。与最先进的模型相比,我们的模型可以在GDELT数据集中实现42%以上的相对改善。同时,它优于ICEWS05-15数据集的最强大的基线,参数减少约为18.5%。
translated by 谷歌翻译
知识图表(KGS)是真实世界事实的结构化表示,是融合人类知识的智能数据库,可以帮助机器模仿人类问题的方法。然而,由于快速迭代的性质以及数据的不完整,KGs通常是巨大的,并且在公斤上有不可避免的事实。对于知识图链接的预测是针对基于现有的知识推理来完成缺少事实的任务。广泛研究了两个主要的研究流:一个学习可以捕获潜在模式的实体和关系的低维嵌入,以及通过采矿逻辑规则的良好解释性。不幸的是,以前的研究很少关注异质的KG。在本文中,我们提出了一种将基于嵌入的学习和逻辑规则挖掘结合的模型,以推断在KG上。具体地,我们研究了从节点程度的角度涉及各种类型的实体和关系的异构kg中的缺失链接的问题。在实验中,我们证明了我们的DegreEmbed模型优于对现实世界的数据集的国家的最先进的方法。同时,我们模型开采的规则具有高质量和可解释性。
translated by 谷歌翻译
知识图(kg)嵌入技术使用实体之间的结构化关系来学习实体和关系的低维表示。传统的KG嵌入技术(例如Transe和Distmult)通过在观察到的KG三胞胎上开发的简单模型来估算这些嵌入。这些方法的三胞胎得分损失函数有所不同。由于这些模型仅使用观察到的三胞胎来估计嵌入,因此它们很容易受到通常发生在现实世界知识图中的数据稀疏性,即每个实体缺乏足够的三胞胎。为了解决这个问题,我们提出了一种有效的方法来增加三胞胎的数量,以解决数据稀疏问题。我们使用随机步行来创建其他三胞胎,以便这些引入三胞胎的关系需要随机步行引起的Metapath。我们还提供了准确有效地从随机步行所引起的可能的元数据集中从可能的Metapath中滤除信息性元素的方法。所提出的方法是模型不合时宜的,可以将增强培训数据集与开箱即用的任何KG嵌入方法一起使用。在基准数据集上获得的实验结果显示了所提出方法的优势。
translated by 谷歌翻译
A temporal knowledge graph (TKG) stores the events derived from the data involving time. Predicting events is extremely challenging due to the time-sensitive property of events. Besides, the previous TKG completion (TKGC) approaches cannot represent both the timeliness and the causality properties of events, simultaneously. To address these challenges, we propose a Logic and Commonsense-Guided Embedding model (LCGE) to jointly learn the time-sensitive representation involving timeliness and causality of events, together with the time-independent representation of events from the perspective of commonsense. Specifically, we design a temporal rule learning algorithm to construct a rule-guided predicate embedding regularization strategy for learning the causality among events. Furthermore, we could accurately evaluate the plausibility of events via auxiliary commonsense knowledge. The experimental results of TKGC task illustrate the significant performance improvements of our model compared with the existing approaches. More interestingly, our model is able to provide the explainability of the predicted results in the view of causal inference. The source code and datasets of this paper are available at https://github.com/ngl567/LCGE.
translated by 谷歌翻译
我们研究了对知识图中链路预测任务的知识图形嵌入(KGE)模型产生数据中毒攻击的问题。为了毒害KGE模型,我们建议利用他们通过知识图中的对称性,反演和构图等关系模式捕获的归纳能力。具体而言,为了降低模型对目标事实的预测信心,建议改善模型对一系列诱饵事实的预测信心。因此,我们通过不同的推理模式来制作对逆势的添加能够改善模型对诱饵事实上的预测信心。我们的实验表明,拟议的中毒攻击在四个KGE模型上倾斜的最先进的基座,用于两个公共数据集。我们还发现基于对称模式的攻击遍历了所有模型 - 数据集合,指示KGE模型对此模式的灵敏度。
translated by 谷歌翻译
基于强化学习(RL)的图表行走在导航代理人通过探索多跳关系路径来导航代理以通过不完整的知识图(kg)来自动完成各种推理任务。然而,现有的多跳推理方法仅在短路推理路径上工作,并且倾向于利用增加的路径长度错过目标实体。这对于实际情况中的许多理由任务是不可取的,其中连接源实体的短路不完整的公斤,因此,除非代理能够寻求更多的线索,否则推理性能急剧下降路径。为了解决上述挑战,在本文中,我们提出了一种双代理强化学习框架,该框架列举了两个代理(巨型和矮人),共同走过了公斤,并协同寻找答案。我们的方法通过将其中一个代理(巨型)进行了快速寻找群集路径并为另一代理(DWARF)提供阶段明智的提示来解决长途路径中的推理挑战。最后,对几千克推理基准测试的实验结果表明,我们的方法可以更准确,高效地搜索答案,并且优于大型余量的长路径查询的基于RL的基于RL的方法。
translated by 谷歌翻译
Knowledge graph (KG) link prediction aims to infer new facts based on existing facts in the KG. Recent studies have shown that using the graph neighborhood of a node via graph neural networks (GNNs) provides more useful information compared to just using the query information. Conventional GNNs for KG link prediction follow the standard message-passing paradigm on the entire KG, which leads to over-smoothing of representations and also limits their scalability. On a large scale, it becomes computationally expensive to aggregate useful information from the entire KG for inference. To address the limitations of existing KG link prediction frameworks, we propose a novel retrieve-and-read framework, which first retrieves a relevant subgraph context for the query and then jointly reasons over the context and the query with a high-capacity reader. As part of our exemplar instantiation for the new framework, we propose a novel Transformer-based GNN as the reader, which incorporates graph-based attention structure and cross-attention between query and context for deep fusion. This design enables the model to focus on salient context information relevant to the query. Empirical results on two standard KG link prediction datasets demonstrate the competitive performance of the proposed method.
translated by 谷歌翻译
知识图(KGS)代表作为三元组的事实已被广泛采用在许多应用中。 LIGHT预测和规则感应等推理任务对于KG的开发很重要。已经提出了知识图形嵌入式(KGES)将kg的实体和kg与持续向量空间的关系进行了建议,以获得这些推理任务,并被证明是有效和强大的。但在实际应用中申请和部署KGE的合理性和可行性尚未探索。在本文中,我们讨论并报告我们在真实域应用程序中部署KGE的经验:电子商务。我们首先为电子商务KG系统提供三个重要的探索者:1)注意推理,推理几个目标关系更为关注而不是全部; 2)解释,提供预测的解释,帮助用户和业务运营商理解为什么预测; 3)可转让规则,生成可重用的规则,以加速将千克部署到新系统。虽然非现有KGE可以满足所有这些DesiderATA,但我们提出了一种新颖的一种,可说明的知识图表注意网络,通过建模三元组之间的相关性而不是纯粹依赖于其头实体,关系和尾部实体嵌入来预测。它可以自动选择预测的注意力三倍,并同时记录它们的贡献,从该解释可以很容易地提供,可以有效地生产可转移规则。我们经验表明,我们的方法能够在我们的电子商务应用程序中满足所有三个DesiderATA,并从实际域应用程序中倾斜于数据集的典型基线。
translated by 谷歌翻译
大型知识图(KGS)提供人类知识的结构化表示。然而,由于不可能包含所有知识,KGs通常不完整。基于现有事实的推理铺平了一种发现缺失事实的方法。在本文中,我们研究了了解完成缺失事实三胞胎的知识图表的推理的学习逻辑规则问题。学习逻辑规则将具有很强的解释性的模型以及概括到类似任务的能力。我们提出了一种称为MPLR的模型,可以改进现有模型以完全使用培训数据,并且考虑多目标方案。此外,考虑到缺乏评估模型表现和开采规则的质量,我们进一步提出了两名新颖的指标来帮助解决问题。实验结果证明我们的MPLR模型在五个基准数据集中优于最先进的方法。结果还证明了指标的有效性。
translated by 谷歌翻译
在时间知识图(TKGS)中,时间维度附加到知识库中的事实,导致(Nintendo,warpore,Super Mario,Super Mario,9月13日至1985年)之间的四倍体,在此谓词在时间间隔内保持在时间戳。我们提出了一名强化学习代理,同时收集有关查询实体社区的时间相关信息。我们将探索图结构的编码称为指纹,用作Q-NETWORK的输入。我们的代理商依次确定需要探索哪种关系类型,以扩展查询实体的本地子图。我们的评估表明,与最先进的嵌入TKG相比,提出的方法会产生竞争性结果,我们还获得有关受试者和对象之间相关结构的信息。
translated by 谷歌翻译
Formulating and answering logical queries is a standard communication interface for knowledge graphs (KGs). Alleviating the notorious incompleteness of real-world KGs, neural methods achieved impressive results in link prediction and complex query answering tasks by learning representations of entities, relations, and queries. Still, most existing query answering methods rely on transductive entity embeddings and cannot generalize to KGs containing new entities without retraining the entity embeddings. In this work, we study the inductive query answering task where inference is performed on a graph containing new entities with queries over both seen and unseen entities. To this end, we devise two mechanisms leveraging inductive node and relational structure representations powered by graph neural networks (GNNs). Experimentally, we show that inductive models are able to perform logical reasoning at inference time over unseen nodes generalizing to graphs up to 500% larger than training ones. Exploring the efficiency--effectiveness trade-off, we find the inductive relational structure representation method generally achieves higher performance, while the inductive node representation method is able to answer complex queries in the inference-only regime without any training on queries and scales to graphs of millions of nodes. Code is available at https://github.com/DeepGraphLearning/InductiveQE.
translated by 谷歌翻译
神经网络的最新进步已经解决了常见的图表问题,例如链路预测,节点分类,节点聚类,通过将实体和关系的嵌入和关系开发到向量空间中来看。绘图嵌入式对图中存在的结构信息进行编码。然后,编码嵌入式可用于预测图中的缺失链接。然而,获得图表的最佳嵌入可以是嵌入式系统中的计算具有挑战性的任务。我们在这项工作中专注的两种技术是1)节点嵌入来自随机步行的方法和2)知识图形嵌入。随机播放的嵌入物是计算地廉价的,但是是次优的,而知识图形嵌入物表现更好,但是计算得昂贵。在这项工作中,我们研究了转换从基于随机步行方法获得的节点嵌入的转换模型,以直接从知识图方法获得的嵌入,而不会增加计算成本。广泛的实验表明,所提出的变换模型可用于实时解决链路预测。
translated by 谷歌翻译
多年来,旨在从已知事实中推断出新结论的知识图(KGS)的推理主要集中在静态KG上。现实生活中知识的不断增长提出了使能够扩大KGS的归纳推理能力的必要性。现有的归纳工作假设新实体都在批处理中一次出现,这过度简化了新实体不断出现的实际情况。这项研究探讨了一个更现实,更具挑战性的环境,新实体分为多批次。我们提出了一个基于步行的归纳推理模型来解决新环境。具体而言,具有自适应关系聚合的图形卷积网络旨在使用其邻近关系编码和更新实体。为了捕捉不同的邻居的重要性,我们在聚合过程中采用了一种查询反馈注意机制。此外,为了减轻新实体的稀疏链接问题,我们提出了一种链接增强策略,以将可信赖的事实添加到KGS中。我们构建了三个新数据集,用于模拟此多批次出现方案。实验结果表明,我们所提出的模型优于基于最先进的基于嵌入的,基于步行的基于步行和基于规则的模型。
translated by 谷歌翻译
从知识图中发现精确且可解释的规则被认为是一个必要的挑战,可以改善许多下游任务的性能,甚至提供新的方法来了解一些自然语言处理主题。在本文中,我们提出了一种基于规则的知识图推理的基本理论,该理论基于图中的连接依赖性通过多种规则类型捕获。这是在知识图中首次考虑其中一些规则类型。基于这些规则类型,我们的理论可以为未知的三元组提供精确的解释。然后,我们通过所谓的统治模型来实现我们的理论。结果表明,我们的统治模型不仅提供了解释新三元组的精确规则,而且还可以在一个基准知识图完成任务上实现最先进的表演,并且在其他任务上具有竞争力。
translated by 谷歌翻译