多跳跃逻辑推理是在知识图(KGS)上学习领域的一个已建立问题。它涵盖了单跳连接预测以及其他更复杂的逻辑查询类型。现有的算法仅在经典的三重基图上运行,而现代KG经常采用超相关的建模范式。在此范式中,键入的边缘可能具有几对键值对,称为限定符,可为事实提供细粒度的环境。在查询中,此上下文修改了关系的含义,通常会减少答案集。经常在现实世界中的应用程序中观察到超相关的查询,并且现有的近似查询答案方法无法使用预选赛对。在这项工作中,我们弥合了这一差距,并将多跳的推理问题扩展到了超级关系的KG,允许解决这一新类型的复杂查询。在图形神经网络和查询嵌入技术的最新进展之下,我们研究了如何嵌入和回答超相关的连词查询。除此之外,我们还提出了一种回答此类查询并在我们的实验中证明的方法,即预选赛可以改善对各种查询模式的查询回答。
translated by 谷歌翻译
Formulating and answering logical queries is a standard communication interface for knowledge graphs (KGs). Alleviating the notorious incompleteness of real-world KGs, neural methods achieved impressive results in link prediction and complex query answering tasks by learning representations of entities, relations, and queries. Still, most existing query answering methods rely on transductive entity embeddings and cannot generalize to KGs containing new entities without retraining the entity embeddings. In this work, we study the inductive query answering task where inference is performed on a graph containing new entities with queries over both seen and unseen entities. To this end, we devise two mechanisms leveraging inductive node and relational structure representations powered by graph neural networks (GNNs). Experimentally, we show that inductive models are able to perform logical reasoning at inference time over unseen nodes generalizing to graphs up to 500% larger than training ones. Exploring the efficiency--effectiveness trade-off, we find the inductive relational structure representation method generally achieves higher performance, while the inductive node representation method is able to answer complex queries in the inference-only regime without any training on queries and scales to graphs of millions of nodes. Code is available at https://github.com/DeepGraphLearning/InductiveQE.
translated by 谷歌翻译
In knowledge graph completion (KGC), predicting triples involving emerging entities and/or relations, which are unseen when the KG embeddings are learned, has become a critical challenge. Subgraph reasoning with message passing is a promising and popular solution. Some recent methods have achieved good performance, but they (i) usually can only predict triples involving unseen entities alone, failing to address more realistic fully inductive situations with both unseen entities and unseen relations, and (ii) often conduct message passing over the entities with the relation patterns not fully utilized. In this study, we propose a new method named RMPI which uses a novel Relational Message Passing network for fully Inductive KGC. It passes messages directly between relations to make full use of the relation patterns for subgraph reasoning with new techniques on graph transformation, graph pruning, relation-aware neighborhood attention, addressing empty subgraphs, etc., and can utilize the relation semantics defined in the ontological schema of KG. Extensive evaluation on multiple benchmarks has shown the effectiveness of techniques involved in RMPI and its better performance compared with the existing methods that support fully inductive KGC. RMPI is also comparable to the state-of-the-art partially inductive KGC methods with very promising results achieved. Our codes and data are available at https://github.com/zjukg/RMPI.
translated by 谷歌翻译
复杂查询应答(CQA)是知识图中的一个重要推理任务。目前已经证明能够从原子操作员概括到更复杂的公式中的当前CQA学习模型,这可以被视为组合概括性。在本文中,我们呈现EFO-1-QA,通过包括301种不同的查询类型来基准CQA模型的组合概括性的EFO-1-QA来基准,这是比现有数据集大的20倍。此外,我们的工作首次提供基准来评估和分析不同运营商和正常形式的影响,通过使用(a)7个选择的操作系统和(b)9形式的复杂查询。具体地,我们提供了两个常用的运营商的组合概括性的详细研究,即投影和交叉点,并证明了鉴于运营商的规范选择的疑问形式的影响。我们的代码和数据可以为基准CQA模型提供有效的管道。
translated by 谷歌翻译
当前的最佳性能模型用于知识图推理(KGR)将几何学对象或概率分布引入嵌入实体,并将一阶逻辑(fol)查询引入低维矢量空间。它们可以总结为中心尺寸框架(点/框/锥,β/高斯分布等)。但是,它们具有有限的逻辑推理能力。而且很难概括到各种功能,因为中心和大小是一对一的约束,无法具有多个中心或尺寸。为了应对这些挑战,我们相反提出了一个名为“特征逻辑嵌入框架Flex”的新颖的KGR框架,这是第一个KGR框架,它不仅可以真正处理所有运营,包括连词,析取,否定,否定等等,而且还支持各种操作特征空间。具体而言,特征逻辑框架的逻辑部分是基于向量逻辑的,它自然地对所有FOL操作进行了建模。实验表明,FLEX在基准数据集上明显优于现有的最新方法。
translated by 谷歌翻译
最近公布的知识图形嵌入模型的实施,培训和评估的异质性已经公平和彻底的比较困难。为了评估先前公布的结果的再现性,我们在Pykeen软件包中重新实施和评估了21个交互模型。在这里,我们概述了哪些结果可以通过其报告的超参数再现,这只能以备用的超参数再现,并且无法再现,并且可以提供洞察力,以及为什么会有这种情况。然后,我们在四个数据集上进行了大规模的基准测试,其中数千个实验和24,804 GPU的计算时间。我们展示了最佳实践,每个模型的最佳配置以及可以通过先前发布的最佳配置进行改进的洞察。我们的结果强调了模型架构,训练方法,丢失功能和逆关系显式建模的组合对于模型的性能来说至关重要,而不仅由模型架构决定。我们提供了证据表明,在仔细配置时,若干架构可以获得对最先进的结果。我们制定了所有代码,实验配置,结果和分析,导致我们在https://github.com/pykeen/pykeen和https://github.com/pykeen/benchmarking中获得的解释
translated by 谷歌翻译
问题回答(QA)对知识库(KBS)的挑战是充满挑战的,因为所需的推理模式多样化,本质上是无限的,类型的推理模式。但是,我们假设以大型KB为基础,以回答各自子图中各个实体的查询类型所需的推理模式。利用不同子图的本地社区之间的这种结构相似性,我们引入了一个半参数模型(cbr-subg),(i)一个非参数组件,每个查询,每个查询,都会动态检索其他类似的$ k $ - $ - $ - $ - near-neart-tebrienk(KNN)培训查询以及查询特定的子图和(ii)训练的参数组件,该参数分量可以从KNN查询的子图中识别(潜在的)推理模式,然后将其应用于目标查询的子图。我们还提出了一种自适应子图收集策略,以选择特定于查询的compact子图,从而使我们可以扩展到包含数十亿个事实的完整freebase kb。我们表明,CBR-SUBG可以回答需要子图推理模式的查询,并在几个KBQA基准上的最佳模型竞争性能。我们的子图收集策略还会产生更多紧凑的子图(例如,webQSP的尺寸减小55 \%,而将答案召回的召回率增加4.85 \%)\ footNote {代码,模型和子码头可在\ url {https://github.com上获得。 /rajarshd/cbr-subg}}。
translated by 谷歌翻译
推理是计算机的基本问题,并且在人工智能中深入研究。在本文中,我们专门针对回答知识图(KGS)的多跳逻辑查询。这是一项复杂的任务,因为在实际情况下,图形往往很大且不完整。以前的大多数作品都无法创建模型,这些模型接受了完整的一阶逻辑(fol)查询,其中包括负查询,并且只能处理有限的查询结构集。此外,大多数方法都呈现只能执行其制作的逻辑操作的逻辑运算符。我们介绍了一组模型,这些模型使用神经网络来创建单点矢量嵌入以回答查询。神经网络的多功能性允许该框架处理连词($ \ wedge $),脱节($ \ vee $)和否定($ \ neg $)运算符的框架查询。我们通过对众所周知的基准数据集进行了广泛的实验,通过实验证明了模型的性能。除了拥有更多多功能运营商外,模型还获得了10 \%的相对增加,而基于单点矢量嵌入的最佳性能状态和比原始方法的相对增加了30 \%。
translated by 谷歌翻译
图表可以表示实体之间的关系信息,图形结构广泛用于许多智能任务,例如搜索,推荐和问题应答。然而,实际上大多数图形结构数据都遭受了不完整性,因此链路预测成为一个重要的研究问题。虽然提出了许多模型来用于链路预测,但以下两个问题仍然仍然较少:(1)大多数方法在不利用相关链路中使用丰富的信息,大多数方法都独立模型,并且(2)现有型号主要基于关联设计学习并没有考虑推理。通过这些问题,在本文中,我们提出了图表协作推理(GCR),它可以使用邻居与逻辑推理视角的关系中的关系推理。我们提供了一种简单的方法来将图形结构转换为逻辑表达式,以便链路预测任务可以转换为神经逻辑推理问题。我们应用逻辑受限的神经模块根据逻辑表达式构建网络架构,并使用反向传播以有效地学习模型参数,这在统一架构中桥接可分辨率的学习和象征性推理。为了展示我们工作的有效性,我们对图形相关任务进行实验,例如基于常用的基准数据集的链路预测和推荐,我们的图表合作推理方法实现了最先进的性能。
translated by 谷歌翻译
Knowledge graph (KG) link prediction aims to infer new facts based on existing facts in the KG. Recent studies have shown that using the graph neighborhood of a node via graph neural networks (GNNs) provides more useful information compared to just using the query information. Conventional GNNs for KG link prediction follow the standard message-passing paradigm on the entire KG, which leads to over-smoothing of representations and also limits their scalability. On a large scale, it becomes computationally expensive to aggregate useful information from the entire KG for inference. To address the limitations of existing KG link prediction frameworks, we propose a novel retrieve-and-read framework, which first retrieves a relevant subgraph context for the query and then jointly reasons over the context and the query with a high-capacity reader. As part of our exemplar instantiation for the new framework, we propose a novel Transformer-based GNN as the reader, which incorporates graph-based attention structure and cross-attention between query and context for deep fusion. This design enables the model to focus on salient context information relevant to the query. Empirical results on two standard KG link prediction datasets demonstrate the competitive performance of the proposed method.
translated by 谷歌翻译
关于现实生活知识图(KGS)的多跳上推理是一个高度挑战的问题,因为传统的子图匹配方法无法处理噪音和缺失信息。为了解决这个问题,最近已经引入了一种有希望的方法,该方法基于将逻辑查询和kgs共同嵌入到一个低维空间中以识别答案实体。但是,现有的提案忽略了KGS中固有可用的关键语义知识,例如类型信息。为了利用类型信息,我们提出了一种新颖的类型感知消息传递(TEMP)模型,该模型可以增强查询中的实体和关系表示形式,并同时改善概括,演绎和归纳推理。值得注意的是,Temp是一种插件模型,可以轻松地将其纳入现有的基于嵌入的模型中以提高其性能。在三个现实世界数据集上进行了广泛的实验证明了温度的有效性。
translated by 谷歌翻译
在大规模不完整的知识图(kgs)上回答复杂的一阶逻辑(fol)查询是一项重要但挑战性的任务。最近的进步将逻辑查询和KG实体嵌入了相同的空间,并通过密集的相似性搜索进行查询。但是,先前研究中设计的大多数逻辑运算符不满足经典逻辑的公理系统,从而限制了其性能。此外,这些逻辑运算符被参数化,因此需要许多复杂的查询作为训练数据,在大多数现实世界中,这些数据通常很难收集甚至无法访问。因此,我们提出了Fuzzqe,这是一种基于模糊逻辑的逻辑查询嵌入框架,用于回答KGS上的查询。 Fuzzqe遵循模糊逻辑以原则性和无学习的方式定义逻辑运算符,在这种方式中,只有实体和关系嵌入才需要学习。 Fuzzqe可以从标记为训练的复杂逻辑查询中进一步受益。在两个基准数据集上进行的广泛实验表明,与最先进的方法相比,Fuzzqe在回答FOL查询方面提供了明显更好的性能。此外,只有KG链接预测训练的Fuzzqe可以实现与经过额外复杂查询数据训练的人的可比性能。
translated by 谷歌翻译
Answering complex logical queries on incomplete knowledge graphs is a challenging task, and has been widely studied. Embedding-based methods require training on complex queries, and cannot generalize well to out-of-distribution query structures. Recent work frames this task as an end-to-end optimization problem, and it only requires a pretrained link predictor. However, due to the exponentially large combinatorial search space, the optimal solution can only be approximated, limiting the final accuracy. In this work, we propose QTO (Query Tree Optimization) that can efficiently find the exact optimal solution. QTO finds the optimal solution by a forward-backward propagation on the tree-like computation graph, i.e., query tree. In particular, QTO utilizes the independence encoded in the query tree to reduce the search space, where only local computations are involved during the optimization procedure. Experiments on 3 datasets show that QTO obtains state-of-the-art performance on complex query answering, outperforming previous best results by an average of 22%. Moreover, QTO can interpret the intermediate solutions for each of the one-hop atoms in the query with over 90% accuracy.
translated by 谷歌翻译
知识图(kg)嵌入是一种主流方法,用于推理不完整的kg。但是,受其固有浅层和静态体系结构的限制,它们几乎无法处理对复杂逻辑查询的不断上升,这些查询包括逻辑运算符,估算的边缘,多个源实体和未知的中间实体。在这项工作中,我们通过掩盖的预训练和微调策略介绍了知识图变压器(kgtransformer)。我们设计了一种kg三重变换方法,以使变压器能够处理kg,这是通过稀疏(MOE)稀疏激活的混合物进一步增强的。然后,我们将复杂的逻辑查询作为掩盖预测提出,并引入了两阶段掩盖的预训练策略,以提高可转移性和概括性。在两个基准上进行的广泛实验表明,KGTRANSFORMER可以始终超过基于KG的基准和九个内域和室外推理任务的高级编码。此外,KGTRANSFORMER可以通过提供解释给定答案的完整推理路径来解释性。
translated by 谷歌翻译
Wikidata是一个经常更新,社区驱动和多语言知识图形。因此,Wikidata是实体联系的一个有吸引力的基础,这是最近发表论文的增加显而易见的。该调查侧重于四个主题:(1)存在哪些Wikidata实体链接数据集,它们是多么广泛使用,它们是如何构建的? (2)对实体联系数据集的设计进行Wikidata的特点,如果是的话,怎么样? (3)当前实体链接方法如何利用Wikidata的特定特征? (4)现有实体链接方法未开发哪种Wikidata特征?本次调查显示,当前的Wikidata特定实体链接数据集在其他知识图表中的方案中的注释方案中没有不同。因此,没有提升多语言和时间依赖数据集的可能性,是自然适合维基帽的数据集。此外,我们表明大多数实体链接方法使用Wikidata以与任何其他知识图相同的方式,因为任何其他知识图都缺少了利用Wikidata特定特征来提高质量的机会。几乎所有方法都使用标签等特定属性,有时是描述,而是忽略超关系结构等特征。因此,例如,通过包括超关系图嵌入或类型信息,仍有改进的余地。许多方法还包括来自维基百科的信息,这些信息很容易与Wikidata组合并提供有价值的文本信息,Wikidata缺乏。
translated by 谷歌翻译
大型知识图(KGS)提供人类知识的结构化表示。然而,由于不可能包含所有知识,KGs通常不完整。基于现有事实的推理铺平了一种发现缺失事实的方法。在本文中,我们研究了了解完成缺失事实三胞胎的知识图表的推理的学习逻辑规则问题。学习逻辑规则将具有很强的解释性的模型以及概括到类似任务的能力。我们提出了一种称为MPLR的模型,可以改进现有模型以完全使用培训数据,并且考虑多目标方案。此外,考虑到缺乏评估模型表现和开采规则的质量,我们进一步提出了两名新颖的指标来帮助解决问题。实验结果证明我们的MPLR模型在五个基准数据集中优于最先进的方法。结果还证明了指标的有效性。
translated by 谷歌翻译
知识图表(KGS)是真实世界事实的结构化表示,是融合人类知识的智能数据库,可以帮助机器模仿人类问题的方法。然而,由于快速迭代的性质以及数据的不完整,KGs通常是巨大的,并且在公斤上有不可避免的事实。对于知识图链接的预测是针对基于现有的知识推理来完成缺少事实的任务。广泛研究了两个主要的研究流:一个学习可以捕获潜在模式的实体和关系的低维嵌入,以及通过采矿逻辑规则的良好解释性。不幸的是,以前的研究很少关注异质的KG。在本文中,我们提出了一种将基于嵌入的学习和逻辑规则挖掘结合的模型,以推断在KG上。具体地,我们研究了从节点程度的角度涉及各种类型的实体和关系的异构kg中的缺失链接的问题。在实验中,我们证明了我们的DegreEmbed模型优于对现实世界的数据集的国家的最先进的方法。同时,我们模型开采的规则具有高质量和可解释性。
translated by 谷歌翻译
回答有关知识图(KG)的复杂查询是一项重要但具有挑战性的任务,因为在推理过程中存在KG不完整问题和级联错误。最近的查询嵌入(QE)方法将实体和关系嵌入kg中,并将一阶逻辑(fol)查询纳入一个低维空间,从而通过密集的相似性搜索来回答查询。但是,以前的作品主要集中在目标答案上,忽略了中间实体的实用性,这对于缓解逻辑查询答案中的级联错误问题至关重要。此外,这些方法通常是用自己的几何或分配嵌入设计的,以处理逻辑运算符,例如联合,交叉路口和否定,并牺牲了基本操作员的准确性 - 投影,他们无法吸收其他嵌入方法,以使其吸收其他嵌入方法楷模。在这项工作中,我们提出了一个神经和象征性的纠缠框架(ENESY),以进行复杂的查询答案,这使神经和象征性推理可以相互增强以减轻级联错误和kg不完整。 Enesy中的投影操作员可以是具有链接预测能力的任何嵌入方法,并且其他FOL操作员无需参数处理。随着神经和象征性推理的结果,合奏中的Enesy答案查询。 Enesy在几个基准上实现了SOTA性能,尤其是在培训模型的设置中,仅具有链接预测任务。
translated by 谷歌翻译
几乎所有知识库的陈述都有时间范围,在此期间它们有效。因此,在时间知识库(TKB)上的知识库完成(KBC),其中每个陈述\ TEXTIT {MAY}与时间范围相关联,引起了不断的关注。先前作品假设TKB \ Texit {必须}中的每个语句都与时间范围相关联。这忽略了kB中常规缺少的范围信息。因此,在此之前的工作通常不能处理通用用例,其中TKB由具有/没有已知的时间范围的时间语句组成。为了解决这个问题,我们建立了一个名为time2box的新知识库嵌入框架,可以同时处理不同类型的atemporal和时间陈述。我们的主要洞察力是时间查询的答案始终属于时间不可知的对应物的答案子集。换句话说,时间是一个过滤器,有助于在某些时期内挑选答案。我们介绍框以将一组答案实体代表到一个时间不可知的查询。时间过滤功能由这些框的交叉点建模。此外,我们概括了关于时间间隔预测的当前评估协议。我们描述了两个数据集上的实验,并表明所提出的方法优于链路预测和时间预测上的最先进的(SOTA)方法。
translated by 谷歌翻译
链接预测是图形上非常基本的任务。在本文中受到传统路径的方法的启发,我们提出了一种基于链路预测路径的一般和灵活的表示学习框架。具体地,我们将一对节点的表示定义为所有路径表示的广义和,每个路径表示为路径中的边缘表示的广义乘积。通过贝尔曼-Ford算法来解决最短路径问题,我们表明,所提出的路径配方可以通过广义的Bellman-Ford算法有效地解决。为了进一步提高路径制构的能力,我们提出了神经贝尔曼 - 福特网络(NBFNET),这是一种全图神经网络框架,其解决了通过广义Bellman-Ford算法中的学习运算符的路径制定。 NBFNET使用3个神经元件,即指示器,消息和聚合函数参数,即分别对应于边界条件,乘法运算符和求和运算符。 NBFNET非常一般,涵盖许多传统的基于路径的方法,并且可以应用于转导和归纳设置的同质图和多关系图(例如,知识图表)。两个均匀图表和知识图表的实验表明,所提出的NBFNET在转换和归纳设置中的大幅度优于现有方法,实现了新的最先进的结果。
translated by 谷歌翻译