Power等人报道的\ emph {grokking现象} {power2021grokking}是指一个长期过度拟合之后,似乎突然过渡到完美的概括。在本文中,我们试图通过一系列经验研究来揭示Grokking的基础。具体而言,我们在极端的训练阶段(称为\ emph {slingshot机构)发现了一个优化的异常缺陷自适应优化器。可以通过稳定和不稳定的训练方案之间的循环过渡来测量弹弓机制的突出伪像,并且可以通过最后一层重量的规范的循环行为轻松监测。我们从经验上观察到,在\ cite {power2021grokking}中报道的无明确正规化,几乎完全发生在\ emph {slingshots}的开始时,并且没有它。虽然在更一般的环境中常见且容易复制,但弹弓机制并不遵循我们所知道的任何已知优化理论,并且可以轻松地忽略而无需深入研究。我们的工作表明,在培训的后期阶段,适应性梯度优化器的令人惊讶且有用的归纳偏见,要求对其起源进行修订。
translated by 谷歌翻译
关于自适应梯度方法等自适应梯度方法等训练动力的知之甚少。在本文中,我们阐明了这些算法在全批处理和足够大的批处理设置中的行为。具体而言,我们从经验上证明,在全批训练中,预处理的Hessian的最大特征值通常在某个数值下平衡 - 梯度下降算法的稳定性阈值。对于带有步长$ \ eta $和$ \ beta_1 = 0.9 $的Adam,此稳定性阈值为$ 38/\ eta $。在Minibatch培训期间发生了类似的影响,尤其是随着批处理大小的增长。然而,即使自适应方法在``稳定性的自适应边缘''(AEOS)上训练,但它们在该制度中的行为与EOS的非自适应方法的行为有很大不同。 EOS处的非自适应算法被阻止进入损失景观的高曲率区域,而AEOS的自适应梯度方法可以继续前进到高外观区域,同时适应预先调节器以补偿。我们的发现可以成为社区对深度学习中适应性梯度方法的未来理解的基础。
translated by 谷歌翻译
深度学习归一化技术的基本特性,例如批准归一化,正在使范围前的参数量表不变。此类参数的固有域是单位球,因此可以通过球形优化的梯度优化动力学以不同的有效学习率(ELR)来表示,这是先前研究的。在这项工作中,我们使用固定的ELR直接研究了训练量表不变的神经网络的特性。我们根据ELR值发现了这种训练的三个方案:收敛,混乱平衡和差异。我们详细研究了这些制度示例的理论检查,以及对真实规模不变深度学习模型的彻底经验分析。每个制度都有独特的特征,并反映了内在损失格局的特定特性,其中一些与先前对常规和规模不变的神经网络培训的研究相似。最后,我们证明了如何在归一化网络的常规培训以及如何利用它们以实现更好的Optima中反映发现的制度。
translated by 谷歌翻译
培训具有批量标准化和重量衰减的神经网络已成为近年来的常见做法。在这项工作中,我们表明它们的结合使用可能导致优化动态的令人惊讶的周期性行为:培训过程定期表现出稳定,然而,不会导致完全发散但导致新的培训期。我们严格研究了从经验和理论观点的发现的定期行为基础的机制,并分析了实践中发生的条件。我们还证明,周期性行为可以被视为在批量归一化和体重衰减的训练中进行两种先前反对的视角的概括,即平衡推定和不稳定的推定。
translated by 谷歌翻译
在他们的损失景观方面观看神经网络模型在学习的统计力学方法方面具有悠久的历史,并且近年来它在机器学习中得到了关注。除此之外,已显示局部度量(例如损失景观的平滑度)与模型的全局性质(例如良好的泛化性能)相关联。在这里,我们对数千个神经网络模型的损失景观结构进行了详细的实证分析,系统地改变了学习任务,模型架构和/或数据数量/质量。通过考虑试图捕获损失景观的不同方面的一系列指标,我们证明了最佳的测试精度是如下:损失景观在全球连接;训练型模型的集合彼此更像;而模型会聚到局部平滑的地区。我们还表明,当模型很小或培训以较低质量数据时,可以出现全球相连的景观景观;而且,如果损失景观全球相连,则培训零损失实际上可以导致更糟糕的测试精度。我们详细的经验结果阐明了学习阶段的阶段(以及后续双重行为),基本与偶然的决定因素良好的概括决定因素,负载样和温度相同的参数在学习过程中,不同的影响对模型的损失景观的影响不同和数据,以及地方和全球度量之间的关系,近期兴趣的所有主题。
translated by 谷歌翻译
在本文中,我们建议研究小算法生成的数据集上神经网络的概括。在此设置中,可以详细地研究关于数据效率,记忆,泛化和学习速度的问题。在某些情况下,我们表明神经网络通过数据中的“喷气”模式来学习,从随机机会水平提高了完全概括的泛化性能,并且这种泛化的改善可能会发生超过过度装备的点。我们还将泛化作为数据集大小的函数,发现较小的数据集需要越来越多的泛化优化。我们认为,这些数据集提供了一种肥沃的基础,用于研究深度学习的不良方面:过度分化的神经网络的概括超出了有限训练数据集的记忆。
translated by 谷歌翻译
我们研究了使用尖刺,现场依赖的随机矩阵理论研究迷你批次对深神经网络损失景观的影响。我们表明,批量黑森州的极值值的大小大于经验丰富的黑森州。我们还获得了类似的结果对Hessian的概括高斯牛顿矩阵近似。由于我们的定理,我们推导出作为批量大小的最大学习速率的分析表达式,为随机梯度下降(线性缩放)和自适应算法(例如ADAM(Square Root Scaling)提供了通知实际培训方案,例如光滑,非凸深神经网络。虽然随机梯度下降的线性缩放是在我们概括的更多限制性条件下导出的,但是适应优化者的平方根缩放规则是我们的知识,完全小说。随机二阶方法和自适应方法的百分比,我们得出了最小阻尼系数与学习率与批量尺寸的比率成比例。我们在Cifar-$ 100 $和ImageNet数据集上验证了我们的VGG / WimerEsnet架构上的索赔。根据我们对象检的调查,我们基于飞行学习率和动量学习者开发了一个随机兰齐齐竞争,这避免了对这些关键的超参数进行昂贵的多重评估的需求,并在预残留的情况下显示出良好的初步结果Cifar的architecure - $ 100 $。
translated by 谷歌翻译
某些培训干预措施(例如提高学习率和应用批归归式化)的机制提高了深网的概括仍然是一个谜。先前的作品猜测,“扁平”解决方案比“更清晰”的解决方案更好地概括了看不见的数据,激发了几个指标来测量平坦度(尤其是损失Hessian最大的特征值);和算法,例如清晰度最小化(SAM)[1],它们直接优化了平坦度。其他作品质疑$ \ lambda_ {max} $与概括之间的链接。在本文中,我们提出了调用$ \ lambda_ {max} $对概括的影响的发现。我们表明:(1)虽然较大的学习率减少了所有批量尺寸的$ \ lambda_ {max} $,但概括益处有时会在较大的批量尺寸下消失; (2)通过同时缩放批量的大小和学习率,我们可以更改$ \ lambda_ {max} $,而不会影响概括; (3)虽然SAM生产较小的$ \ lambda_ {max} $,用于所有批次尺寸,概括益处(也)消失,较大的批量尺寸; (4)对于辍学,过高的辍学概率可能会降低概括,即使它们促进了较小的$ \ lambda_ {max} $; (5)虽然批处理范围并未始终产生较小的$ \ lambda_ {max} $,但它仍然赋予概括性优势。尽管我们的实验肯定了大型学习率和SAM对Minibatch SGD的概括优势,但GD-SGD差异证明了对$ \ lambda_ {Max} $解释神经网络中概括的能力的限制。
translated by 谷歌翻译
深度学习在广泛的AI应用方面取得了有希望的结果。较大的数据集和模型一致地产生更好的性能。但是,我们一般花费更长的培训时间,以更多的计算和沟通。在本调查中,我们的目标是在模型精度和模型效率方面提供关于大规模深度学习优化的清晰草图。我们调查最常用于优化的算法,详细阐述了大批量培训中出现的泛化差距的可辩论主题,并审查了解决通信开销并减少内存足迹的SOTA策略。
translated by 谷歌翻译
The vast majority of successful deep neural networks are trained using variants of stochastic gradient descent (SGD) algorithms. Recent attempts to improve SGD can be broadly categorized into two approaches: (1) adaptive learning rate schemes, such as AdaGrad and Adam, and (2) accelerated schemes, such as heavy-ball and Nesterov momentum. In this paper, we propose a new optimization algorithm, Lookahead, that is orthogonal to these previous approaches and iteratively updates two sets of weights. Intuitively, the algorithm chooses a search direction by looking ahead at the sequence of "fast weights" generated by another optimizer. We show that Lookahead improves the learning stability and lowers the variance of its inner optimizer with negligible computation and memory cost. We empirically demonstrate Lookahead can significantly improve the performance of SGD and Adam, even with their default hyperparameter settings on ImageNet, CIFAR-10/100, neural machine translation, and Penn Treebank.
translated by 谷歌翻译
Neural network training relies on our ability to find "good" minimizers of highly non-convex loss functions. It is well-known that certain network architecture designs (e.g., skip connections) produce loss functions that train easier, and wellchosen training parameters (batch size, learning rate, optimizer) produce minimizers that generalize better. However, the reasons for these differences, and their effects on the underlying loss landscape, are not well understood. In this paper, we explore the structure of neural loss functions, and the effect of loss landscapes on generalization, using a range of visualization methods. First, we introduce a simple "filter normalization" method that helps us visualize loss function curvature and make meaningful side-by-side comparisons between loss functions. Then, using a variety of visualizations, we explore how network architecture affects the loss landscape, and how training parameters affect the shape of minimizers.
translated by 谷歌翻译
当我们扩大数据集,模型尺寸和培训时间时,深入学习方法的能力中存在越来越多的经验证据。尽管有一些关于这些资源如何调节统计能力的说法,但对它们对模型培训的计算问题的影响知之甚少。这项工作通过学习$ k $ -sparse $ n $ bits的镜头进行了探索,这是一个构成理论计算障碍的规范性问题。在这种情况下,我们发现神经网络在扩大数据集大小和运行时间时会表现出令人惊讶的相变。特别是,我们从经验上证明,通过标准培训,各种体系结构以$ n^{o(k)} $示例学习稀疏的平等,而损失(和错误)曲线在$ n^{o(k)}后突然下降。 $迭代。这些积极的结果几乎匹配已知的SQ下限,即使没有明确的稀疏性先验。我们通过理论分析阐明了这些现象的机制:我们发现性能的相变不到SGD“在黑暗中绊倒”,直到它找到了隐藏的特征集(自然算法也以$ n^中的方式运行{o(k)} $ time);取而代之的是,我们表明SGD逐渐扩大了人口梯度的傅立叶差距。
translated by 谷歌翻译
We show that a variety of modern deep learning tasks exhibit a "double-descent" phenomenon where, as we increase model size, performance first gets worse and then gets better. Moreover, we show that double descent occurs not just as a function of model size, but also as a function of the number of training epochs. We unify the above phenomena by defining a new complexity measure we call the effective model complexity and conjecture a generalized double descent with respect to this measure. Furthermore, our notion of model complexity allows us to identify certain regimes where increasing (even quadrupling) the number of train samples actually hurts test performance. * Work performed in part while Preetum Nakkiran was interning at OpenAI, with Ilya Sutskever. We especially thank Mikhail Belkin and Christopher Olah for helpful discussions throughout this work.
translated by 谷歌翻译
Batch Normalization (BatchNorm) is a widely adopted technique that enables faster and more stable training of deep neural networks (DNNs). Despite its pervasiveness, the exact reasons for BatchNorm's effectiveness are still poorly understood. The popular belief is that this effectiveness stems from controlling the change of the layers' input distributions during training to reduce the so-called "internal covariate shift". In this work, we demonstrate that such distributional stability of layer inputs has little to do with the success of BatchNorm. Instead, we uncover a more fundamental impact of BatchNorm on the training process: it makes the optimization landscape significantly smoother. This smoothness induces a more predictive and stable behavior of the gradients, allowing for faster training.
translated by 谷歌翻译
L 2 regularization and weight decay regularization are equivalent for standard stochastic gradient descent (when rescaled by the learning rate), but as we demonstrate this is not the case for adaptive gradient algorithms, such as Adam. While common implementations of these algorithms employ L 2 regularization (often calling it "weight decay" in what may be misleading due to the inequivalence we expose), we propose a simple modification to recover the original formulation of weight decay regularization by decoupling the weight decay from the optimization steps taken w.r.t. the loss function. We provide empirical evidence that our proposed modification (i) decouples the optimal choice of weight decay factor from the setting of the learning rate for both standard SGD and Adam and (ii) substantially improves Adam's generalization performance, allowing it to compete with SGD with momentum on image classification datasets (on which it was previously typically outperformed by the latter). Our proposed decoupled weight decay has already been adopted by many researchers, and the community has implemented it in TensorFlow and PyTorch; the complete source code for our experiments is
translated by 谷歌翻译
Neural network pruning techniques can reduce the parameter counts of trained networks by over 90%, decreasing storage requirements and improving computational performance of inference without compromising accuracy. However, contemporary experience is that the sparse architectures produced by pruning are difficult to train from the start, which would similarly improve training performance.We find that a standard pruning technique naturally uncovers subnetworks whose initializations made them capable of training effectively. Based on these results, we articulate the lottery ticket hypothesis: dense, randomly-initialized, feed-forward networks contain subnetworks (winning tickets) that-when trained in isolationreach test accuracy comparable to the original network in a similar number of iterations. The winning tickets we find have won the initialization lottery: their connections have initial weights that make training particularly effective.We present an algorithm to identify winning tickets and a series of experiments that support the lottery ticket hypothesis and the importance of these fortuitous initializations. We consistently find winning tickets that are less than 10-20% of the size of several fully-connected and convolutional feed-forward architectures for MNIST and CIFAR10. Above this size, the winning tickets that we find learn faster than the original network and reach higher test accuracy.
translated by 谷歌翻译
引入了归一化层(例如,批处理归一化,层归一化),以帮助在非常深的网中获得优化困难,但它们显然也有助于概括,即使在不太深入的网中也是如此。由于长期以来的信念,即最小的最小值导致更好的概括,本文提供了数学分析和支持实验,这表明归一化(与伴随的重量赛一起)鼓励GD降低损失表面的清晰度。鉴于损失是标准不变的,这是标准化的已知结果,因此仔细地定义了“清晰度”。具体而言,对于具有归一化的相当广泛的神经网类,我们的理论解释了有限学习率的GD如何进入所谓的稳定边缘(EOS)制度,并通过连续的清晰度来表征GD的轨迹 - 还原流。
translated by 谷歌翻译
最近的结果表明,在训练期间重新升级神经网络参数的子集可以改善泛化,特别是对于小型训练集。我们研究不同重新初始化方法在12个基准图像分类数据集中的几种卷积架构中的影响,分析了它们的潜在收益和突出显示限制。我们还介绍了一种新的层状重新初始化算法,优于先前的方法,并建议观察到的改进的泛化的解释。首先,我们表明,无需增加重量的规范,可以在不增加重量的规范的情况下增加训练示例的余量。因此,导致神经网络的边缘的泛化范围的改善。其次,我们证明它在损失表面的平坦局部最小值中稳定。第三,它鼓励学习一般规则,并通过强调神经网络的下层来劝阻记忆。我们的外带消息是使用自下而上的层状重新初始化的小型数据集可以改善卷积神经网络的准确性,其中重新初始层的数量可能因可用计算预算而变化。
translated by 谷歌翻译
``神经切线内核'(NTK)(Jacot等人,2018年)及其经验变体被提议作为捕获真实神经网络某些行为的代理。在这项工作中,我们通过缩放定律的镜头研究NTK,并证明它们无法解释神经网络概括的重要方面。特别是,我们证明了现实的设置,其中有限宽度的神经网络具有与初始化时相应的经验和无限NTK相比,具有更好的数据缩放指数。这揭示了真实网络和NTK之间的更根本差异,仅仅是几个百分点的测试准确性。此外,我们表明,即使允许经验NTK在恒定数量的样本上进行预训练,也不会赶上神经网络缩放。最后,我们表明,经验NTK在整个培训的大部分培训中都在不断发展,与先前的工作相反,这表明它在经过几个时代的培训后稳定。总的来说,我们的工作确立了NTK方法在理解自然数据集对真实网络的概括方面的具体限制。
translated by 谷歌翻译
这项工作研究了基于梯度的算法的现有理论分析与训练深神经网络的实践之间的深刻断开。具体而言,我们提供了数值证据,表明在大规模神经网络训练(例如Imagenet + Resnet101和WT103 + Transformerxl模型)中,神经网络的权重不会融合到损失的梯度为零的固定点。然而,值得注意的是,我们观察到,即使权重不融合到固定点,最小化损耗函数的进展和训练损失稳定下来。受到这一观察的启发,我们提出了一种基于动力学系统的千古理论来解释它的新观点。我们没有研究权重演化,而是研究权重分布的演变。我们证明了权重分布到近似不变的度量,从而解释了训练损失如何稳定而无需重合到固定点。我们进一步讨论了这种观点如何更好地调整优化理论与机器学习实践中的经验观察。
translated by 谷歌翻译