许多前馈神经网络会产生连续和分段线性(CPWL)映射。具体而言,它们将输入域分配给映射为仿射函数的区域。这些所谓的线性区域的数量提供了自然度量标准,可以表征CPWL映射的表现力。尽管该数量的精确确定通常是无法触及的,但已经针对包括众所周知的Relu和Maxout网络提出了界限。在这项工作中,我们提出了一个更一般的观点,并基于三种表达能力来源:深度,宽度和激活复杂性,就CPWL网络的最大线性区域数量提供精确的界限。我们的估计依赖于凸形分区的组合结构,并突出了深度的独特作用,该作用本身能够呈指数级增加区域数量。然后,我们引入了一个互补的随机框架,以估计CPWL网络体系结构产生的线性区域的平均数量。在合理的假设下,沿任何一维路径的线性区域的预期密度都受深度,宽度和激活复杂度度量(最高缩放系数)的量的限制。这对三种表达能力产生了相同的作用:不再观察到深度的指数增长。
translated by 谷歌翻译
我们介绍了可以由具有Maxout单位的人造馈电神经网络表示的功能线性区域的数量。排名kaxout单元是一个函数,计算$ k $线性函数的最大值。对于具有单层Maxout单元的网络,线性区域对应于Minkowski多型的上顶点。我们根据热带超曲面的交点或部分Minkowski总和的上面数,以及任何输入维度的区域数,任何单位数量,任何等级,任何等级,任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,在有和没有偏见的情况下。基于这些结果,我们还为具有多层的网络获得了渐近的上限。
translated by 谷歌翻译
使用神经网络学习依赖于可代表功能的复杂性,但更重要的是,典型参数的特定分配与不同复杂度的功能。将激活区域的数量作为复杂性度量,最近的作品表明,深度释放网络的实际复杂性往往远远远非理论最大值。在这项工作中,我们表明这种现象也发生在具有颤扬(多参数)激活功能的网络中,并且在考虑分类任务中的决策边界时。我们还表明参数空间具有多维全维区域,具有广泛不同的复杂性,并在预期的复杂性上获得非竞争下限。最后,我们调查了不同的参数初始化程序,并表明他们可以提高培训的收敛速度。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译
在本文中,我们研究了与具有多种激活函数的浅神经网络相对应的变异空间的近似特性。我们介绍了两个主要工具,用于估计这些空间的度量熵,近似率和$ n $宽度。首先,我们介绍了平滑参数化词典的概念,并在非线性近似速率,度量熵和$ n $ widths上给出了上限。上限取决于参数化的平滑度。该结果适用于与浅神经网络相对应的脊功能的字典,并且在许多情况下它们的现有结果改善了。接下来,我们提供了一种方法,用于下限度量熵和$ n $ widths的变化空间,其中包含某些类别的山脊功能。该结果给出了$ l^2 $ approximation速率,度量熵和$ n $ widths的变化空间的急剧下限具有界变化的乙状结激活函数。
translated by 谷歌翻译
我们有助于更好地理解由具有Relu激活和给定架构的神经网络表示的功能。使用来自混合整数优化,多面体理论和热带几何的技术,我们为普遍近似定理提供了数学逆向,这表明单个隐藏层足以用于学习任务。特别是,我们调查完全可增值功能是否完全可以通过添加更多层(没有限制大小)来严格增加。由于它为神经假设类别代表的函数类提供给算法和统计方面,这个问题对算法和统计方面具有潜在的影响。然而,据我们所知,这个问题尚未在神经网络文学中调查。我们还在这些神经假设类别中代表功能所需的神经网络的大小上存在上限。
translated by 谷歌翻译
We study the complexity of functions computable by deep feedforward neural networks with piecewise linear activations in terms of the symmetries and the number of linear regions that they have. Deep networks are able to sequentially map portions of each layer's input-space to the same output. In this way, deep models compute functions that react equally to complicated patterns of different inputs. The compositional structure of these functions enables them to re-use pieces of computation exponentially often in terms of the network's depth. This paper investigates the complexity of such compositional maps and contributes new theoretical results regarding the advantage of depth for neural networks with piecewise linear activation functions. In particular, our analysis is not specific to a single family of models, and as an example, we employ it for rectifier and maxout networks. We improve complexity bounds from pre-existing work and investigate the behavior of units in higher layers.
translated by 谷歌翻译
We study the expressibility and learnability of convex optimization solution functions and their multi-layer architectural extension. The main results are: \emph{(1)} the class of solution functions of linear programming (LP) and quadratic programming (QP) is a universal approximant for the $C^k$ smooth model class or some restricted Sobolev space, and we characterize the rate-distortion, \emph{(2)} the approximation power is investigated through a viewpoint of regression error, where information about the target function is provided in terms of data observations, \emph{(3)} compositionality in the form of a deep architecture with optimization as a layer is shown to reconstruct some basic functions used in numerical analysis without error, which implies that \emph{(4)} a substantial reduction in rate-distortion can be achieved with a universal network architecture, and \emph{(5)} we discuss the statistical bounds of empirical covering numbers for LP/QP, as well as a generic optimization problem (possibly nonconvex) by exploiting tame geometry. Our results provide the \emph{first rigorous analysis of the approximation and learning-theoretic properties of solution functions} with implications for algorithmic design and performance guarantees.
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
众所周知,具有重新激活函数的完全连接的前馈神经网络可以表示的参数化函数家族恰好是一类有限的分段线性函数。鲜为人知的是,对于Relu神经网络的每个固定架构,参数空间都允许对称的正维空间,因此,在任何给定参数附近的局部功能维度都低于参数维度。在这项工作中,我们仔细地定义了功能维度的概念,表明它在Relu神经网络函数的参数空间中是不均匀的,并继续进行[14]和[5]中的调查 - 何时在功能维度实现其理论时最大。我们还研究了从参数空间到功能空间的实现图的商空间和纤维,提供了断开连接的纤维的示例,功能尺寸为非恒定剂的纤维以及对称组在其上进行非转换的纤维。
translated by 谷歌翻译
我们研究神经网络表达能力的基本限制。给定两组$ f $,$ g $的实值函数,我们首先证明了$ f $中的功能的一般下限,可以在$ l^p(\ mu)$ norm中通过$ g中的功能近似$,对于任何$ p \ geq 1 $和任何概率度量$ \ mu $。下限取决于$ f $的包装数,$ f $的范围以及$ g $的脂肪震动尺寸。然后,我们实例化了$ g $对应于分段的馈电神经网络的情况,并详细描述了两组$ f $:h {\“ o} lder balls和多变量单调函数。除了匹配(已知或新的)上限与日志因素外,我们的下限还阐明了$ l^p $ Norm或SUP Norm中近似之间的相似性或差异,解决了Devore等人的开放问题(2021年))。我们的证明策略与SUP Norm案例不同,并使用了Mendelson(2002)的关键概率结果。
translated by 谷歌翻译
对于由缺陷线性回归中的标签噪声引起的预期平均平方概率,我们证明了无渐近分布的下限。我们的下部结合概括了过度公共数据(内插)制度的类似已知结果。与最先前的作品相比,我们的分析适用于广泛的输入分布,几乎肯定的全排列功能矩阵,允许我们涵盖各种类型的确定性或随机特征映射。我们的下限是渐近的锐利,暗示在存在标签噪声时,缺陷的线性回归不会在任何这些特征映射中围绕内插阈值进行良好的。我们详细分析了强加的假设,并为分析(随机)特征映射提供了理论。使用此理论,我们可以表明我们的假设对于具有(Lebesgue)密度的输入分布以及随机深神经网络给出的特征映射,具有Sigmoid,Tanh,SoftPlus或Gelu等分析激活功能。作为进一步的例子,我们示出了来自随机傅里叶特征和多项式内核的特征映射也满足我们的假设。通过进一步的实验和分析结果,我们补充了我们的理论。
translated by 谷歌翻译
彩票假设猜测稀疏子网的存在大型随机初始化的深神经网络,可以在隔离中成功培训。最近的工作已经通过实验观察到这些门票中的一些可以在各种任务中实际重复使用,以某种形式的普遍性暗示。我们正规化这一概念,理论上证明不仅存在此类环球票,而且还不需要进一步培训。我们的证据介绍了一些与强化强烈彩票票据相关的技术创新,包括延长子集合结果的扩展和利用更高量的深度的策略。我们的明确稀疏建设普遍函数家庭可能具有独立的兴趣,因为它们突出了单变量卷积架构引起的代表效益。
translated by 谷歌翻译
Several problems in stochastic analysis are defined through their geometry, and preserving that geometric structure is essential to generating meaningful predictions. Nevertheless, how to design principled deep learning (DL) models capable of encoding these geometric structures remains largely unknown. We address this open problem by introducing a universal causal geometric DL framework in which the user specifies a suitable pair of geometries $\mathscr{X}$ and $\mathscr{Y}$ and our framework returns a DL model capable of causally approximating any ``regular'' map sending time series in $\mathscr{X}^{\mathbb{Z}}$ to time series in $\mathscr{Y}^{\mathbb{Z}}$ while respecting their forward flow of information throughout time. Suitable geometries on $\mathscr{Y}$ include various (adapted) Wasserstein spaces arising in optimal stopping problems, a variety of statistical manifolds describing the conditional distribution of continuous-time finite state Markov chains, and all Fr\'echet spaces admitting a Schauder basis, e.g. as in classical finance. Suitable, $\mathscr{X}$ are any compact subset of any Euclidean space. Our results all quantitatively express the number of parameters needed for our DL model to achieve a given approximation error as a function of the target map's regularity and the geometric structure both of $\mathscr{X}$ and of $\mathscr{Y}$. Even when omitting any temporal structure, our universal approximation theorems are the first guarantees that H\"older functions, defined between such $\mathscr{X}$ and $\mathscr{Y}$ can be approximated by DL models.
translated by 谷歌翻译
我们研究了神经网络中平方损耗训练问题的优化景观和稳定性,但通用非线性圆锥近似方案。据证明,如果认为非线性圆锥近似方案是(以适当定义的意义)比经典线性近似方法更具表现力,并且如果存在不完美的标签向量,则在方位损耗的训练问题必须在其中不稳定感知其解决方案集在训练数据中的标签向量上不连续地取决于标签向量。我们进一步证明对这些不稳定属性负责的效果也是马鞍点出现的原因和杂散的局部最小值,这可能是从全球解决方案的任意遥远的,并且既不训练问题也不是训练问题的不稳定性通常,杂散局部最小值的存在可以通过向目标函数添加正则化术语来克服衡量近似方案中参数大小的目标函数。无论可实现的可实现性是否满足,后一种结果都被证明是正确的。我们表明,我们的分析特别适用于具有可变宽度的自由结插值方案和深层和浅层神经网络的培训问题,其涉及各种激活功能的任意混合(例如,二进制,六骨,Tanh,arctan,软标志, ISRU,Soft-Clip,SQNL,Relu,Lifley Relu,Soft-Plus,Bent Identity,Silu,Isrlu和ELU)。总之,本文的发现说明了神经网络和一般非线性圆锥近似仪器的改进近似特性以直接和可量化的方式与必须解决的优化问题的不期望的性质链接,以便训练它们。
translated by 谷歌翻译
大多数随机梯度下降算法可以优化在其参数中的子微分内的神经网络;然而,这意味着神经网络的激活函数必须表现出一定程度的连续性,这将神经网络模型的均匀近似容量限制为连续功能。本文重点介绍不连续性从不同的子模式产生的情况,每个子模式都在输入空间的不同部分上定义。我们提出了一种新的不连续的深度神经网络模型,通过解耦的两步过程培训,避免通过网络的唯一和战略放置的不连续单元通过梯度更新。我们为我们在我们在此介绍的分段连续功能的空间中提供了近似的宽度保证。我们为我们的结构量身定制了一部小型半监督两步培训程序,为其结构量身定制,我们为其有效性提供了理论支持。我们的模型和提议程序培训的性能在实验上在实际的金融数据集和合成数据集上进行了实验评估。
translated by 谷歌翻译
我们研究了$ \ Mathcal {r} $的结构和统计属性 - 规范最小化由特定目标函数标记的数据集的内侧插值。$ \ MATHCAL {R} $ - 标准是两层神经网络的电感偏差的基础,最近引入了捕获网络权重大小的功能效果,与网络宽度无关。我们发现,即使有适合数据的脊函数,这些插值也是本质上的多元功能,而且$ \ Mathcal {r} $ - 规范归纳偏见不足以实现某些学习问题的统计上最佳概括。总的来说,这些结果为与实际神经网络训练有关的感应偏见提供了新的启示。
translated by 谷歌翻译
让F:R ^ N - > R是前馈RELU神经网络。众所周知,对于任何选择参数,F是连续和分段(仿射)线性的。我们为有系统调查提供了一些基础,用于系统的架构如何影响其可能的决策区域的几何和拓扑以进行二进制分类任务。在差分拓扑中顺利函数的经典进展之后,我们首先定义通用,横向relu神经网络的概念,并显示几乎所有的Relu网络都是通用的和横向的。然后,我们在F的域中定义了一个部分取向的线性1-复合物,并识别该复合物的属性,从而产生妨碍决策区域的有界连接分量的障碍物。我们使用该阻塞来证明具有单个隐藏的尺寸层(N + 1)的通用横向Relu网络F:R ^ N - > R的决策区域可以不具有多于一个有界连接的组件。
translated by 谷歌翻译
我们研究了与给定的无向图$ g $相对应的图形模型的最大似然估计的问题。我们表明,最大似然估计(MLE)是几个帐篷函数的指数的乘积,每个最大集团的$ g $。虽然图形模型中的一组对数符号密度是无限维度的,但我们的结果表明,可以通过求解有限维凸优化问题来找到MLE。我们提供实施和一些示例。此外,我们证明MLE存在并且具有概率为1,只要样品数量大于$ g $ chordal时最大的$ g $集团的大小。我们证明,当图$ g $是集团的不交联时,MLE是一致的。最后,我们讨论了$ g $的图形模型中的对数 - 串联密度在$ g $中具有对数符号分解的条件。
translated by 谷歌翻译