Rylls Tilt-Rotor是无人机,有八个输入;可以根据控制规则指定推力的四个大小以及推力的四个倾斜角。尽管取得了模拟的成功,但常规反馈线性化证明了投入的过度变化,同时适用于稳定Rylls倾斜旋转。因此,我们以前的研究将额外的步态计划提交了额外的程序,以抑制倾斜角度的意外变化。伴随两个颜色地图定理,倾斜角度是坚定而连续的。设计的步态对态度的改变是可靠的。但是,在进一步应用跟踪模拟测试之前,这不是一个完整的理论。本文进一步讨论了两个颜色图定理之后的一些步态,并模拟了倾斜旋转的跟踪问题。均匀的圆形移动参考设计为由配备了设计健壮步态和反馈线性化控制器的倾斜旋转器跟踪。满足两个彩色图定理的步态显示了鲁棒性。模拟的结果显示了跟踪倾斜旋转的成功。
translated by 谷歌翻译
步态计划是一种通常应用于地面机器人的过程,例如四足机器人; Tilt-Rotor是一种新型的四型四个输入,不是其中之一。在控制倾斜 - 依赖反馈线性化的倾斜旋转时,预计倾斜角度(输入)将过度改变,这在应用程序中可能不会预期。为了帮助抑制倾斜角度的密集变化,在反馈线性化之前,将步态计划程序引入倾斜度。用户提前时间指定倾斜角度,而不是由控制规则给出。但是,基于这种情况,反馈线性化中的去耦矩阵对于某些态度,滚动角度和螺距角的组合可能是单数的。它阻碍了反馈线性化的进一步应用。因此,建立了两个彩色图定理,以最大程度地提高可接受的态度区域,在该区域中,滚动和音高的组合将产生可逆的去耦矩阵。然而,该定理过度限制了倾斜角度的选择,这可以排除一些可行的健壮步态。本文给出了广义的两个彩色图定理。所有健壮的步态都可以根据这种广义定理找到。分析了满足该广义的两个彩色图定理(违反两个彩色图定理)的三个步态的鲁棒性。结果表明,概括的两个颜色图定理完成了对倾斜旋转的稳健步态的搜索。
translated by 谷歌翻译
反馈线性化是一种用于控制倾斜转子的流行控制方法。尽管该方法带来了利用系统过度致动的性能的机会,但典型的结果表明倾斜角度的大变化,这在实际情况下不期望。为了解决这个问题,我们介绍了新颖的概念UAV步态来限制倾斜角度。步态计划问题最初是为了解决四肢(四足腿)机器人的控制问题。在移植这种方法的同时,伴随着反馈线性化方法,在倾斜转子可能导致解耦矩阵中的众所周知的非可逆问题。在这项研究中,我们探讨了倾斜转子的可逆步态,并应用反馈线性化以稳定姿态和高度。结果在Simulink,Matlab中验证。
translated by 谷歌翻译
Gaits和Transitions是腿部运动的关键组件。对于腿机器人,描述和再现Gaits以及过渡仍然存在长期挑战。强化学习已成为制定腿机器人控制器的强大工具。然而,学习多次Gaits和Transitions,与多任务学习问题有关。在这项工作中,我们提出了一种新颖的框架,用于培训一个简单的控制策略,以便将四足机器人培训到各种GA足够的机器人。使用四个独立阶段作为步态发生器和控制策略之间的界面,其表征了四英尺的运动。由阶段引导,四叉机器人能够根据生成的遗传率,例如步行,小跑,起搏和边界,并在那些Gaits之间进行过渡。可以使用更多的一般阶段来产生复杂的Gaits,例如混合节奏跳舞。通过控制策略,黑豹机器人是一种中型狗大小的四足机器人,可以在自然环境中平滑且鲁棒地在速度和鲁棒方面进行速度下进行所有学习的电机技能。
translated by 谷歌翻译
This paper presents a state-of-the-art optimal controller for quadruped locomotion. The robot dynamics is represented using a single rigid body (SRB) model. A linear time-varying model predictive controller (LTV MPC) is proposed by using linearization schemes. Simulation results show that the LTV MPC can execute various gaits, such as trot and crawl, and is capable of tracking desired reference trajectories even under unknown external disturbances. The LTV MPC is implemented as a quadratic program using qpOASES through the CasADi interface at 50 Hz. The proposed MPC can reach up to 1 m/s top speed with an acceleration of 0.5 m/s2 executing a trot gait. The implementation is available at https:// github.com/AndrewZheng-1011/Quad_ConvexMPC
translated by 谷歌翻译
在本文中,我们全能地提出了一种基于混合线性倒置的方法(H唇),用于合成和稳定3D足底双模行走,重点是彻底的硬件实现。提出了H-唇缘以捕获机器人行走的欠置和致动部分的基本组成部分。然后基于H唇直接合成机器人行走步态。我们全面地表征了H唇的周期性轨道,并通过其步骤 - 步骤(S2S)动力学可证明步骤稳定,然后用于近似于质量中心的水平状态的S2S动态(COM)机器人散步。近似设施基于H唇的步进控制器,提供所需的步长,以稳定机器人行走。通过实现所需的步骤尺寸,机器人实现了动态且稳定的行走。在欠扰动的BipeDal机器人Cassie的模拟和实验中完全评估了该方法,其展示了具有高通用和鲁棒性的动态行走行为。
translated by 谷歌翻译
串联连接的机器人是希望在大规模灾害中的搜索和救援等限制空间中执行任务的候选人。这种机器人通常是韧带,我们假设肢体的添加可以改善移动性。然而,在设计和控制这种装置方面的挑战在于以提高移动性的方式协调高维冗余模块。在这里,我们开发了一个控制串联连接的多腿机器人的一般框架。具体地,我们结合了两种方法来构建一般的形状控制方案,其可以为各种机器人形态的有效运动提供自变形(“Gaits”)的基线模式。首先,我们从维度降低和生物步态分类方案中获取灵感,以产生身体变形和脚提升/降低的循环模式,其促进了任意基板接触图案的产生。其次,我们使用几何力学方法来促进识别这些起伏的最佳相位,以最大化速度和/或稳定性。我们的方案允许在扁平摩擦地形上的多腿机器人机车上的有效Gaits开发有多种数量的四肢(4,6,16,甚至0四肢)和身体致动能力(包括在Limbless设备上的侧壁Gaits)。通过适当协调身体波动和腿部放置,我们的框架结合了Limbless机器人(模块化)和腿机器人(移动性)的优势。我们预计我们的框架可以提供一般的控制方案,以便快速部署一般的多腿机器人,铺平往达在现实条件下遍历复杂环境的机器的方式。
translated by 谷歌翻译
基于步态阶段的控制是步行AID机器人的热门研究主题,尤其是机器人下限假体。步态阶段估计是基于步态阶段控制的挑战。先前的研究使用了人类大腿角的整合或差异来估计步态阶段,但是累积的测量误差和噪声可能会影响估计结果。在本文中,提出了一种更健壮的步态相估计方法,使用各种运动模式的分段单调步态相位大角模型的统一形式。步态相仅根据大腿角度估算,这是一个稳定的变量,避免了相位漂移。基于卡尔曼滤波器的平滑液旨在进一步抑制估计步态阶段的突变。基于提出的步态相估计方法,基于步态阶段的关节角跟踪控制器是为跨股骨假体设计的。提出的步态估计方法,步态相和控制器通过在各种运动模式下的步行数据进行离线分析来评估。基于步态阶段的控制器的实时性能在经际假体的实验中得到了验证。
translated by 谷歌翻译
由于其鲁棒性和可扩展性,在使用增强学习的速度学习时,可以越来越兴趣地学习四足机器人的速度指令跟踪控制器。但是,无论命令速度如何,单个策略训练训练,通常都显示了单个步态。考虑到根据四足动物的速度,考虑到最佳步态存在的次优的解决方案。在这项工作中,我们提出了一个分层控制器,用于四足机器人,可以在跟踪速度命令的同时生成多个Gaits(即步态,小跑,绑定)。我们的控制器由两项策略组成,每个政策都作为中央图案发生器和本地反馈控制器组成,并培训了具有层次强化学习。实验结果表明1)特定速度范围的最佳步态的存在2)与由单个策略组成的控制器相比,我们的分层控制器的效率通常显示单个步态。代码公开可用。
translated by 谷歌翻译
本文提出了一种步态分解(G.D),一种数学上分解蛇运动的方法,以及步态参数梯度(GPG),一种优化分解步态参数的方法。G.D是一种方法,可以在数学附下,并在产生蛇机器人的运动时使用曲线函数来产生运动的蛇步态。通过这种方法,蛇机器人的步态可以直观地分为矩阵,以及灵活地调节步态生成所需的曲线函数的参数。这可以解决参数调整的问题,这就是为蛇机器人难以实际使用的原因,很难。因此,如果该G.D应用于蛇机器人,则可以使用少数参数生成各种GA,因此蛇机器人可以在许多领域中使用。我们还实现了GPG算法来优化步态曲线功能,以及通过G.D定义蛇机器人的步态。
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
随着垂直起飞和着陆和长航时的特点,倾转旋翼吸引了相当多的关注近几十年来其在民用和科研应用潜力。然而,强耦合,非线性特性和不匹配的干扰的问题,不可避免地存在于倾转旋翼机,它带来的过渡模式控制器的设计极大的挑战。在本文中,我们结合一个超扭曲扩张状态观测器(STESO)具有自适应递归滑模控制(ARSMC)一起使用STESO-ARSMC(SAC)来设计以过渡模式倾转旋翼飞行器姿态系统控制器。首先,六个自由度的倾转旋翼的(DOF)的非线性数学模型被建立。其次,美国和干扰是由STES观察者估计。第三,ARSM控制器旨在实现有限时间内收敛。 Lyapunov函数用来作证的倾转旋翼无人机系统的融合。新的方面是,状态的评估被并入控制规则来调整中断。相较于先前技术,控制系统,这项工作可以大大提高抗干扰性能提出。最后,模拟试验,是要证明建议的技术的有效性。
translated by 谷歌翻译
模型预测控制(MPC)方法被广泛用于机器人技术,因为它们允许在机器人移动时计算更新的轨迹。他们通常需要启发式参考,以进行跟踪术语和成本功能参数的正确调整,以便获得良好的性能。例如,当腿部机器人必须对环境的干扰(例如,推动后恢复)或以静态不稳定步态跟踪某个目标时,算法的有效性会降解。在这项工作中,我们提出了一个新型基于优化的参考生成器,名为州长,该发电机利用线性倒置的摆模型来计算质量中心的参考轨迹,同时考虑了步态的可能不足(例如,在小跑中)。获得的轨迹用作我们先前工作中提出的非线性MPC成本函数的参考[1]。我们还提出了一个公式,可以保证一定的响应时间达到目​​标,而无需调整成本条款的权重。此外,校正了立足点以将机器人朝目标推动。我们证明了在与Aliengo机器人不同情况下的模拟和实验中,我们的方法的有效性。
translated by 谷歌翻译
在腿部机器人的机车上,执行高度敏捷的动态动作,例如跳跃或跑步的踏板乐队,这仍然是一个挑战性的问题。本文提出了一个框架,该框架结合了轨迹优化和模型预测控制,以在踏脚石上执行强大的连续跳跃。在我们的方法中,我们首先利用基于机器人的全非线性动力学的轨迹优化来生成各种跳跃距离的周期性跳跃轨迹。然后,基于模型预测控制的跳跃控制器设计用于实现平滑的跳跃过渡,从而使机器人能够在步进石上实现连续跳跃。得益于将MPC作为实时反馈控制器的合并,该提议的框架也得到了验证,可以对机器人动力学上的高度扰动和模型不确定性具有不均匀的平台。
translated by 谷歌翻译
我们提出了一种基于直接质心控制的人形机器人的运动和平衡的综合方法。我们的方法使用人形生物的五质量描述。它从机器人的所需脚部轨迹和质心参数产生全身运动。一组简化的模型用于制定一般和直观的控制定律,然后实时应用它们,以估算和调节质量位置的中心和多体惯性主轴的方向。所提出的算法的组合产生了一条伸展的步态,并具有自然的上身运动。由于仅需要6轴IMU和关节编码器才能实现,因此机器人之间的可移植性很高。我们的方法已通过类人类开放式平台对实验进行了实验验证,证明了全身运动和推动排斥能力。
translated by 谷歌翻译
我们正在寻求控制设计范例的腿部系统,可以绕过昂贵的算法,这些算法依赖于这些系统中广泛使用的重型电脑,但能够通过使用更便宜的无优化框架来匹配他们可以做的事情。在这项工作中,我们提出了我们在波士顿东北大学(HUSKY Carbon}的Quadrupeal Robot的建模和控制设计中的初步结果,这些机器人在波士顿东北大学(Nu)开发中。在我们的方法中,我们利用了监督控制员和明确的参考调理(ERG)来实施地面反作用力约束。通常使用昂贵的优化强制执行这些约束。但是,在这项工作中,ERG操纵应用于监控控制器的状态参考以通过基于Lyapunov稳定性参数的更新法来强制执行地面接触限制。因此,计算的方法比广泛使用的基于优化的方法更快。
translated by 谷歌翻译
在本文中,提出了一个稳定稳定的轨迹跟踪控制器,用于多uav有效载荷运输。多uav有效负载系统在无人机和有效负载框架的垂直刚性链接之间具有2DOF磁球接头,因此无人机可以自由滚动或自由投球。这些垂直链接紧密地连接到有效载荷上,无法移动。为完整的有效载体 - uav系统得出了输入输出反馈线性化模型以及有效载荷轨迹跟踪的推力矢量控制。关于跟踪控制定律的理论分析表明,控制定律是指数稳定的,从而确保了沿期望轨迹的安全运输。为了验证拟议的控制定律的性能,提供了数值模拟以及高保真凉亭实时仿真的结果。接下来,针对两种实际情况分析了提议的控制器的鲁棒性:有效载荷和有效载荷质量不确定性的外部干扰。结果清楚地表明,所提出的控制器在实现指数稳定的轨迹跟踪的同时具有稳健性和计算效率。
translated by 谷歌翻译
外部磁场可用于远程控制小尺寸的机器人,使其具有多样化的生物医学和工程应用的候选人。我们表明,我们的磁动毫罗罗布特是高度敏捷的,并且可以执行各种机车任务,例如枢轴行走和在水平面翻滚。在这里,我们专注于控制枢轴行走模式中该毫无米罗罗布特的运动效果。开发了系统的数学模型,派生了运动模型。还研究了机器人运动中扫描和倾斜角度的作用。我们提出了两个控制器来调节枢轴步行者的步态。第一个是比例几何控制器,它决定了Millobot应该使用的正确枢轴点。然后,它基于毫无槌和参考轨迹的中心之间的误差按比例地调节角速度。第二控制器基于梯度下降优化技术,其表示控制动作作为优化问题。这些控制算法使得MilliRobot能够在跟踪所需的轨迹时产生稳定的步态。我们进行一组不同的实验和模拟运行,以确定所提出的控制器在跟踪误差方面的不同扫描和倾斜角度的有效性。这两个控制器表现出适当的性能,但观察到基于梯度下降基于的控制器产生更快的收敛时间,更小的跟踪误差和更少的步数。最后,我们对扫描角度,倾斜角度和步进时间对跟踪误差的影响进行了广泛的实验参数分析。正如我们所预期的那样,基于优化的控制器优于基于几何的控制器。
translated by 谷歌翻译
本文为两足机器人提供了一个步态控制器,鉴于局部斜率和摩擦锥信息,可以在各个地形上行走高度敏捷。没有这些考虑,不合时宜的影响会导致机器人绊倒,而在姿势脚下的切向反作用力不足会导致滑倒。我们通过以新颖的方式将基于角动量线性倒置的摆(ALIP)和模型预测控制(MPC)脚放置计划者组合来解决这些挑战,该模型由虚拟约束方法执行。该过程始于从Cassie 3D Bipedal机器人的完整动力学中抽象,该机器人的质量动力学中心的精确低维表示,通过角动量参数化。在分段平面地形假设和消除机器人质量中心的角动量的术语中,有关接触点的质心动力学变为线性,并具有四个尺寸。重要的是,我们在MPC公式中以均匀间隔的间隔内包含步骤的动力学,以便可以从逐步到步进机器人的演变上进行现实的工作空间约束。低维MPC控制器的输出通过虚拟约束方法直接在高维Cassie机器人上实现。在实验中,我们验证了机器人控制策略在各种表面上具有不同倾斜和质地的性能。
translated by 谷歌翻译
中枢神经系统(CNS)利用预期(APA)和补偿性(CPA)的姿势调整以保持平衡。姿势调整包括质量中心的稳定性(COM)(COM)和身体的压力分布相互影响,如果存在他们俩缺乏表现。任何可预测的或突然的扰动都可能为COM与平衡和身体的均匀压力分布的分歧铺平道路。由于其不良的APA和CPA,并引起了它们的跌倒。神经系统患者跌倒风险的最小化方法正在利用基于扰动的康复,因为它有效地恢复了平衡障碍。根据发现的结果,我们的发现,我们的发现,我们的发现,我们的发现,我们的发现,我们的发现是有效的。介绍新型3 DOF平行操纵器的设计,实现和实验评估,以治疗M. M.的平衡障碍,机器人平台允许角运动脚踝基于其拟人化的自由。赋予上下平台的最终效应分别旨在评估每只脚的压力分布和身体的com。在机器人平台的高级控制中,用于调节任务的难度水平。在这项研究中,在模拟环境中得出并验证了机器人的运动学和动态分析。还通过PID控制器成功实现了对原型的低级控制。每个平台的容量都通过一组实验来评估,考虑评估最终效应器上的脚注和类似对象的压力分布和COM。实验结果表明,这样的系统井井有条,需要通过APA和CPA进行平衡技能培训和评估。
translated by 谷歌翻译