已经广泛地研究了使用虹膜和围眼区域作为生物特征,主要是由于虹膜特征的奇异性以及当图像分辨率不足以提取虹膜信息时的奇异区域的使用。除了提供有关个人身份的信息外,还可以探索从这些特征提取的功能,以获得其他信息,例如个人的性别,药物使用的影响,隐形眼镜的使用,欺骗等。这项工作提出了对为眼部识别创建的数据库的调查,详细说明其协议以及如何获取其图像。我们还描述并讨论了最受欢迎的眼镜识别比赛(比赛),突出了所提交的算法,只使用Iris特征和融合虹膜和周边地区信息实现了最佳结果。最后,我们描述了一些相关工程,将深度学习技术应用于眼镜识别,并指出了新的挑战和未来方向。考虑到有大量的眼部数据库,并且每个人通常都设计用于特定问题,我们认为这项调查可以广泛概述眼部生物识别学中的挑战。
translated by 谷歌翻译
生物识别技术在过去十年中越来越多地部署,比传统的个人认可方法提供更大的安全性和便利性。虽然生物识别信号的质量严重影响生物识别系统的性能,但在评估质量的先验研究中有限。质量是安全的关键问题,特别是在涉及监视摄像机,取证,便携式设备或通过互联网远程访问的不利情景。本文分析了对生物识别质量产生负面影响的因素,如何克服它们,以及如何将质量措施纳入生物识别系统。在这些问题中对本领域的审查提供了一种对生物识别质量挑战的整体框架。
translated by 谷歌翻译
智能手机已经使用基于生物识别的验证系统,以在高度敏感的应用中提供安全性。视听生物识别技术因其可用性而受欢迎,并且由于其多式化性质,欺骗性将具有挑战性。在这项工作中,我们介绍了一个在五个不同最近智能手机中捕获的视听智能手机数据集。考虑到不同的现实情景,这个新数据集包含在三个不同的会话中捕获的103个科目。在该数据集中获取三种不同的语言,以包括扬声器识别系统的语言依赖性问题。这些数据集的这些独特的特征将为实施新的艺术技术的单向或视听扬声器识别系统提供途径。我们还报告了DataSet上的基准标记的生物识别系统的性能。生物识别算法的鲁棒性朝向具有广泛实验的重播和合成信号等信号噪声,设备,语言和呈现攻击等多种依赖性。获得的结果提出了许多关于智能手机中最先进的生物识别方法的泛化特性的担忧。
translated by 谷歌翻译
通过生物手段自动验证一个人的身份是在每天的日常活动,如在机场访问银行服务和安全控制的一个重要应用。为了提高系统的可靠性,通常使用几个生物识别设备。这种组合系统被称为多模式生物测定系统。本文报道生物安全DS2(访问控制)评估由英国萨里大学举办的活动,包括面部,指纹和虹膜的个人认证生物特征的框架内进行基准研究,在媒体针对物理访问控制中的应用-size建立一些500人。虽然多峰生物测定是公调查对象,不存在基准融合算法的比较。朝着这个目标努力,我们设计了两组实验:质量依赖性和成本敏感的评估。质量依赖性评价旨在评估融合算法如何可以在变化的原始图像的质量主要是由于设备的变化来执行。在对成本敏感的评价,另一方面,研究了一种融合算法可以如何执行给定的受限的计算和在软件和硬件故障的存在,从而导致错误,例如失败到获取和失败到匹配。由于多个捕捉设备可用,融合算法应该能够处理这种非理想但仍然真实的场景。在这两种评价中,各融合算法被提供有从每个生物统计比较子系统以及两个模板和查询数据的质量度量得分。在活动的号召的响应证明是非常令人鼓舞的,与提交22个融合系统。据我们所知,这是第一次尝试基准品质为基础多模态融合算法。
translated by 谷歌翻译
本章的主要范围是作为面部介绍攻击检测的介绍,包括过去几年的关键资源和领域的进步。下一页呈现了面部识别系统可以面对的不同演示攻击,其中攻击者向传感器提供给传感器,主要是相机,呈现攻击仪器(PAI),这通常是照片,视频或掩码,试图冒充真正的用户。首先,我们介绍了面部识别的现状,部署水平及其挑战。此外,我们介绍了面部识别系统可能暴露的漏洞和可能的攻击,表明呈现攻击检测方法的高度重要性。我们审核不同类型的演示攻击方法,从更简单到更复杂,在哪个情况下它们可能是有效的。然后,我们总结了最受欢迎的演示文稿攻击检测方法来处理这些攻击。最后,我们介绍了研究界使用的公共数据集,以探索面部生物识别性的脆弱性,以呈现攻击,并对已知的PAI制定有效的对策。
translated by 谷歌翻译
提出了一种使用基于质量相关特征的新颖的指纹参数化的新的基于软件的活性检测方法。该系统在高度挑战的数据库上测试,该数据库包括超过10,500个实际和假图像,其中包含不同技术的五个传感器,并在材料和程序中覆盖各种直接攻击情景,然后遵循生成胶状手指。所提出的解决方案证明对多场景数据集具有强大,并呈现90%正确分类的样本的总速率。此外,所呈现的活性检测方法具有上述从手指中仅需要一个图像的先前研究的技术的额外优点,以决定它是真实还是假的。最后一个特征提供了具有非常有价值的功能的方法,因为它使其更不具有侵入性,更多的用户友好,更快,并降低其实现成本。
translated by 谷歌翻译
通常,基于生物谱系的控制系统可能不依赖于各个预期行为或合作适当运行。相反,这种系统应该了解未经授权的访问尝试的恶意程序。文献中提供的一些作品建议通过步态识别方法来解决问题。这些方法旨在通过内在的可察觉功能来识别人类,尽管穿着衣服或配件。虽然该问题表示相对长时间的挑战,但是为处理问题的大多数技术存在与特征提取和低分类率相关的几个缺点,以及其他问题。然而,最近的深度学习方法是一种强大的一组工具,可以处理几乎任何图像和计算机视觉相关问题,为步态识别提供最重要的结果。因此,这项工作提供了通过步态认可的关于生物识别检测的最近作品的调查汇编,重点是深入学习方法,强调他们的益处,暴露出弱点。此外,它还呈现用于解决相关约束的数据集,方法和体系结构的分类和表征描述。
translated by 谷歌翻译
虹膜识别技术在过去几十年中吸引了日益增长的兴趣,我们目睹了从研究实验室迁移到现实世界应用的迁移。该技术的部署提出了关于与这些系统相关的主要漏洞和安全威胁的问题。在这些威胁中,介绍攻击突出了一些最相关和研究的。呈现攻击可以被定义为人类特征或工件的呈现直接到试图干扰其正常操作的生物识别系统的捕获设备。在虹膜的情况下,这些攻击包括使用真正的虹膜以及具有不同级别的复杂程度的工件,例如照片或视频。本章介绍了已开发的虹膜演示攻击检测(PAD)方法,以降低呈现攻击所带来的风险。首先,我们总结了最受欢迎的攻击类型,包括地址的主要挑战。其次,我们提出了一个介绍攻击检测方法的分类,作为这一非常活跃的研究区域的简要介绍。最后,我们讨论了这些方法根据实际应用中最重要的情况识别虹膜识别系统。
translated by 谷歌翻译
研究的目的:在生物社区,可见人类的特征是普遍和可行的验证和识别移动设备上。然而,驾驶员能够通过创造假人和人工生物识别来欺骗系统来欺骗这些特征。可见的生物识别系统遭遇了呈现攻击的高安全性风险。方法:在此期间,基于挑战的方法,特别是视线跟踪和瞳孔动态似乎比别人接触生物系统更加安全的方法。我们审查了探索凝视跟踪和瞳孔动态活力检测的现有工作。主要结果:本研究分析了视线跟踪和瞳孔动态演示攻击的各个方面,如国家的最先进的活跃度检测算法,各种文物,公共数据库的可访问性和标准化的在这方面的总结。此外,我们讨论了未来的工作和开放挑战,以基于基于挑战的系统创造安全的活力检测。
translated by 谷歌翻译
指纹验证中的一个开放问题是对图像质量退化的鲁棒性缺乏鲁棒性。质量差的图像导致虚假且缺失的功能,从而降低整体系统的性能。因此,对于指纹识别系统非常重要,以估计捕获的指纹图像的质量和有效性。在这项工作中,我们审查了现有的指纹图像质量估算方法,包括发表措施背后的理由,以及在不同质量条件下显示其行为的视觉示例。我们还测试了一系列指纹图像质量估计算法。对于实验,我们雇用BioSec多模态基线语料库,其中包括在两个与三个不同传感器中获取的200个个人的19200个指纹图像。比较所选质量措施的行为,在大多数情况下显示它们之间的高相关性。还研究了低质量样本在验证性能中的影响,也是广泛可用的小型指纹匹配系统。
translated by 谷歌翻译
我们提出了一种质量感知的多模式识别框架,其将来自多个生物特征的表示与不同的质量和样本数量相结合,以通过基于样本的质量提取互补识别信息来实现增加的识别准确性。我们通过使用以弱监督时尚估计的质量分数加权,为融合输入方式的质量意识框架,以融合输入方式的融合。此框架利用两个融合块,每个融合块由一组质量感知和聚合网络表示。除了架构修改外,我们还提出了两种特定于任务特定的损耗功能:多模式可分离性损失和多模式紧凑性损失。第一个损失确保了类的模态的表示具有可比的大小来提供更好的质量估计,而不同类别的多式数代表分布以实现嵌入空间中的最大判别。第二次丢失,被认为是正规化网络权重,通过规范框架来提高泛化性能。我们通过考虑由面部,虹膜和指纹方式组成的三个多模式数据集来评估性能。通过与最先进的算法进行比较来证明框架的功效。特别是,我们的框架优于BioMdata的模式的级别和得分级别融合超过30%以获得$ 10 ^ { - 4} $ 10 ^ { - 4} $的真正验收率。
translated by 谷歌翻译
最近,已经提出了表面电灰度(EMG)作为一种新的生物特征,用于解决当前生物识别性的一些关键限制,例如欺骗和活力。 EMG信号具有独特的特征:它们对个体(生物读像学)固有不同,并且可以定制以实现多长度代码或密码(例如,通过执行不同的手势)。但是,基于目前的基于EMG的生物识别研究具有两个关键限制:1)与其他更熟悉的生物识别性状相比,2)限于单一会话或单日数据集。在本研究中,从43种参与者收集前臂和手腕EMG数据,在三个不同的日子中收集,而在长时间的分离,同时进行静电手势和手势手势。多日生物识别认证导致前臂设置为0.017的中值,手腕设置为0.025,可与建立良好的生物识别性状相当,表明在多天内表现一致的性能。呈现的大型多日数据集和调查结果可以促进基于EMG的生物识别和其他基于手势识别的应用的进一步研究。
translated by 谷歌翻译
基于全面的生物识别是一个广泛的研究区域。然而,仅使用部分可见的面,例如在遮盖的人的情况下,是一个具有挑战性的任务。在这项工作中使用深卷积神经网络(CNN)来提取来自遮盖者面部图像的特征。我们发现,第六和第七完全连接的层,FC6和FC7分别在VGG19网络的结构中提供了鲁棒特征,其中这两层包含4096个功能。这项工作的主要目标是测试基于深度学习的自动化计算机系统的能力,不仅要识别人,还要对眼睛微笑等性别,年龄和面部表达的认可。我们的实验结果表明,我们为所有任务获得了高精度。最佳记录的准确度值高达99.95%,用于识别人员,99.9%,年龄识别的99.9%,面部表情(眼睛微笑)认可为80.9%。
translated by 谷歌翻译
面部演示攻击检测(PAD)由于欺骗欺骗性被广泛认可的脆弱性而受到越来越长。在2011年,2013年,2017年,2019年,2020年和2021年与主要生物识别和计算机视觉会议结合的八个国际竞赛中,在八个国际竞赛中评估了一系列国际竞争中的八种国际竞争中的艺术状态。研究界。在本章中,我们介绍了2019年的五个最新竞赛的设计和结果直到2021年。前两项挑战旨在评估近红外(NIR)和深度方式的多模态设置中面板的有效性。彩色相机数据,而最新的三个竞争专注于评估在传统彩色图像和视频上运行的面部垫算法的域和攻击型泛化能力。我们还讨论了从竞争中吸取的经验教训以及领域的未来挑战。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
横梁面部识别(CFR)旨在识别个体,其中比较面部图像源自不同的感测模式,例如红外与可见的。虽然CFR由于与模态差距相关的面部外观的显着变化,但CFR具有比经典的面部识别更具挑战性,但它在具有有限或挑战的照明的场景中,以及在呈现攻击的情况下,它是优越的。与卷积神经网络(CNNS)相关的人工智能最近的进展使CFR的显着性能提高了。由此激励,这项调查的贡献是三倍。我们提供CFR的概述,目标是通过首先正式化CFR然后呈现具体相关的应用来比较不同光谱中捕获的面部图像。其次,我们探索合适的谱带进行识别和讨论最近的CFR方法,重点放在神经网络上。特别是,我们提出了提取和比较异构特征以及数据集的重新访问技术。我们枚举不同光谱和相关算法的优势和局限性。最后,我们讨论了研究挑战和未来的研究线。
translated by 谷歌翻译
大多数手指静脉特征提取算法由于其质地表示能力而达到满意的性能,尽管同时忽略了手指组织形成的强度分布,以及在某些情况下,将其加工为背景噪声。在本文中,我们利用这种噪音作为一种新型软生物识别性状,以实现更好的手指静脉识别性能。首先,提出了对手指静脉成像原理的详细分析和图像的特性,以表明由背景中的手指组织形成的强度分布可以作为柔软的生物分析来识别。然后,提出了两个指静脉背景层提取算法和三个软生物识别性提取算法,用于强度分布特征提取。最后,提出了一种混合匹配策略来解决初级和软生物识别性质之间的尺寸差异在得分水平上。三个开放式数据库的一系列严格对比实验表明,我们所提出的方法是手指静脉识别的可行和有效。
translated by 谷歌翻译
可取消的生物识别性是指一组技术,其中生物识别输入在处理或存储前用键有意地转换。该转换是可重复的,可以实现后续生物特征比较。本文介绍了一种可消除生物识别性的新方案,旨在保护模板免受潜在攻击,适用于任何基于生物识别的识别系统。我们所提出的方案基于从变形随机生物识别信息获得的时变键。给出了面部生物识别技术的实验实施。结果证实,该方法能够在提高识别性能的同时抵抗泄漏攻击。
translated by 谷歌翻译
在本文中,我们开发FaceQVEC,一种软件组件,用于估计ISO / IEC 19794-5中所考虑的每个要点的面部图像的符合性,这是一个质量标准,该标准定义了将它们可接受或不可接受的面部图像的一般质量指南用于官方文件,如护照或身份证。这种质量评估的工具可以有助于提高面部识别的准确性,并确定哪些因素影响给定的面部图像的质量,并采取行动消除或减少这些因素,例如,具有后处理技术或重新获取图像。 FaceQVEC由与上述标准中预期的不同点相关的25个单独测试的自动化,以及被认为与面部质量有关的图像的其他特征。我们首先包括在现实条件下捕获的开发数据集上评估的质量测试的结果。我们使用这些结果来调整每个测试的判定阈值。然后,我们再次在评估数据库中再次检查,该评估数据库包含在开发期间未见的新脸部图像。评估结果展示了个人测试的准确性,用于检查遵守ISO / IEC 19794-5。 Faceqvec可在线获取(https://github.com/uam-biometrics/faceqvec)。
translated by 谷歌翻译
面部面罩已成为减少Covid-19传输的主要方法之一。这使得面部识别(FR)成为一个具有挑战性的任务,因为掩模隐藏了几个面孔的鉴别特征。此外,面部呈现攻击检测(PAD)至关重要,以确保FR系统的安全性。与越来越多的蒙面的FR研究相比,尚未探索面部遮蔽攻击对垫的影响。因此,我们提出了与戴上面具的主题和攻击的真正面罩的新型攻击,以反映当前的现实情况。此外,本研究通过在不同的实验设置下使用七种最新的垫算法来研究屏蔽攻击对垫性能的影响。我们还评估FR系统漏洞屏蔽攻击。实验表明,真正掩盖的攻击对FR系统的操作和安全构成了严重威胁。
translated by 谷歌翻译