提出了一种使用基于质量相关特征的新颖的指纹参数化的新的基于软件的活性检测方法。该系统在高度挑战的数据库上测试,该数据库包括超过10,500个实际和假图像,其中包含不同技术的五个传感器,并在材料和程序中覆盖各种直接攻击情景,然后遵循生成胶状手指。所提出的解决方案证明对多场景数据集具有强大,并呈现90%正确分类的样本的总速率。此外,所呈现的活性检测方法具有上述从手指中仅需要一个图像的先前研究的技术的额外优点,以决定它是真实还是假的。最后一个特征提供了具有非常有价值的功能的方法,因为它使其更不具有侵入性,更多的用户友好,更快,并降低其实现成本。
translated by 谷歌翻译
大多数手指静脉特征提取算法由于其质地表示能力而达到满意的性能,尽管同时忽略了手指组织形成的强度分布,以及在某些情况下,将其加工为背景噪声。在本文中,我们利用这种噪音作为一种新型软生物识别性状,以实现更好的手指静脉识别性能。首先,提出了对手指静脉成像原理的详细分析和图像的特性,以表明由背景中的手指组织形成的强度分布可以作为柔软的生物分析来识别。然后,提出了两个指静脉背景层提取算法和三个软生物识别性提取算法,用于强度分布特征提取。最后,提出了一种混合匹配策略来解决初级和软生物识别性质之间的尺寸差异在得分水平上。三个开放式数据库的一系列严格对比实验表明,我们所提出的方法是手指静脉识别的可行和有效。
translated by 谷歌翻译
通过生物手段自动验证一个人的身份是在每天的日常活动,如在机场访问银行服务和安全控制的一个重要应用。为了提高系统的可靠性,通常使用几个生物识别设备。这种组合系统被称为多模式生物测定系统。本文报道生物安全DS2(访问控制)评估由英国萨里大学举办的活动,包括面部,指纹和虹膜的个人认证生物特征的框架内进行基准研究,在媒体针对物理访问控制中的应用-size建立一些500人。虽然多峰生物测定是公调查对象,不存在基准融合算法的比较。朝着这个目标努力,我们设计了两组实验:质量依赖性和成本敏感的评估。质量依赖性评价旨在评估融合算法如何可以在变化的原始图像的质量主要是由于设备的变化来执行。在对成本敏感的评价,另一方面,研究了一种融合算法可以如何执行给定的受限的计算和在软件和硬件故障的存在,从而导致错误,例如失败到获取和失败到匹配。由于多个捕捉设备可用,融合算法应该能够处理这种非理想但仍然真实的场景。在这两种评价中,各融合算法被提供有从每个生物统计比较子系统以及两个模板和查询数据的质量度量得分。在活动的号召的响应证明是非常令人鼓舞的,与提交22个融合系统。据我们所知,这是第一次尝试基准品质为基础多模态融合算法。
translated by 谷歌翻译
已经广泛地研究了使用虹膜和围眼区域作为生物特征,主要是由于虹膜特征的奇异性以及当图像分辨率不足以提取虹膜信息时的奇异区域的使用。除了提供有关个人身份的信息外,还可以探索从这些特征提取的功能,以获得其他信息,例如个人的性别,药物使用的影响,隐形眼镜的使用,欺骗等。这项工作提出了对为眼部识别创建的数据库的调查,详细说明其协议以及如何获取其图像。我们还描述并讨论了最受欢迎的眼镜识别比赛(比赛),突出了所提交的算法,只使用Iris特征和融合虹膜和周边地区信息实现了最佳结果。最后,我们描述了一些相关工程,将深度学习技术应用于眼镜识别,并指出了新的挑战和未来方向。考虑到有大量的眼部数据库,并且每个人通常都设计用于特定问题,我们认为这项调查可以广泛概述眼部生物识别学中的挑战。
translated by 谷歌翻译
生物识别技术在过去十年中越来越多地部署,比传统的个人认可方法提供更大的安全性和便利性。虽然生物识别信号的质量严重影响生物识别系统的性能,但在评估质量的先验研究中有限。质量是安全的关键问题,特别是在涉及监视摄像机,取证,便携式设备或通过互联网远程访问的不利情景。本文分析了对生物识别质量产生负面影响的因素,如何克服它们,以及如何将质量措施纳入生物识别系统。在这些问题中对本领域的审查提供了一种对生物识别质量挑战的整体框架。
translated by 谷歌翻译
展示了在欧洲生物安全卓越网络框架内设计和获取的新的多模态生物识别数据库。它由600多个个人在三种情况下在三种情况下获得:1)在互联网上,2)在带台式PC的办公环境中,以及3)在室内/室外环境中,具有移动便携式硬件。这三种方案包括音频/视频数据的共同部分。此外,已使用桌面PC和移动便携式硬件获取签名和指纹数据。此外,使用桌面PC在第二个方案中获取手和虹膜数据。收购事项已于11名欧洲机构进行。 BioSecure多模式数据库(BMDB)的其他功能有:两个采集会话,在某些方式的几种传感器,均衡性别和年龄分布,多式化现实情景,每种方式,跨欧洲多样性,人口统计数据的可用性,以及人口统计数据的可用性与其他多模式数据库的兼容性。 BMDB的新型收购条件允许我们对单币或多模式生物识别系统进行新的具有挑战性的研究和评估,如最近的生物安全的多模式评估活动。还给出了该活动的描述,包括来自新数据库的单个模式的基线结果。预计数据库将通过2008年通过生物安全协会进行研究目的
translated by 谷歌翻译
随着对手工卫生的需求不断增长和使用的便利性,掌上识别最近具有淡淡的发展,为人识别提供了有效的解决方案。尽管已经致力于该地区的许多努力,但仍然不确定无接触棕榈污染的辨别能力,特别是对于大规模数据集。为了解决问题,在本文中,我们构建了一个大型无尺寸的棕榈纹数据集,其中包含了来自1167人的2334个棕榈手机。为了我们的最佳知识,它是有史以来最大的非接触式手掌形象基准,而是关于个人和棕榈树的数量收集。此外,我们提出了一个名为3DCPN(3D卷积棕榈识别网络)的无棕榈识别的新型深度学习框架,它利用3D卷积来动态地集成多个Gabor功能。在3DCPN中,嵌入到第一层中的新颖变体以增强曲线特征提取。通过精心设计的集合方案,然后将低级别的3D功能卷积以提取高级功能。最后在顶部,我们设置了基于地区的损失功能,以加强全局和本地描述符的辨别能力。为了展示我们方法的优越性,在我们的数据集和其他流行数据库同济和IITD上进行了广泛的实验,其中结果显示了所提出的3DCPN实现最先进的或可比性的性能。
translated by 谷歌翻译
我们提出了一种质量感知的多模式识别框架,其将来自多个生物特征的表示与不同的质量和样本数量相结合,以通过基于样本的质量提取互补识别信息来实现增加的识别准确性。我们通过使用以弱监督时尚估计的质量分数加权,为融合输入方式的质量意识框架,以融合输入方式的融合。此框架利用两个融合块,每个融合块由一组质量感知和聚合网络表示。除了架构修改外,我们还提出了两种特定于任务特定的损耗功能:多模式可分离性损失和多模式紧凑性损失。第一个损失确保了类的模态的表示具有可比的大小来提供更好的质量估计,而不同类别的多式数代表分布以实现嵌入空间中的最大判别。第二次丢失,被认为是正规化网络权重,通过规范框架来提高泛化性能。我们通过考虑由面部,虹膜和指纹方式组成的三个多模式数据集来评估性能。通过与最先进的算法进行比较来证明框架的功效。特别是,我们的框架优于BioMdata的模式的级别和得分级别融合超过30%以获得$ 10 ^ { - 4} $ 10 ^ { - 4} $的真正验收率。
translated by 谷歌翻译
通常,基于生物谱系的控制系统可能不依赖于各个预期行为或合作适当运行。相反,这种系统应该了解未经授权的访问尝试的恶意程序。文献中提供的一些作品建议通过步态识别方法来解决问题。这些方法旨在通过内在的可察觉功能来识别人类,尽管穿着衣服或配件。虽然该问题表示相对长时间的挑战,但是为处理问题的大多数技术存在与特征提取和低分类率相关的几个缺点,以及其他问题。然而,最近的深度学习方法是一种强大的一组工具,可以处理几乎任何图像和计算机视觉相关问题,为步态识别提供最重要的结果。因此,这项工作提供了通过步态认可的关于生物识别检测的最近作品的调查汇编,重点是深入学习方法,强调他们的益处,暴露出弱点。此外,它还呈现用于解决相关约束的数据集,方法和体系结构的分类和表征描述。
translated by 谷歌翻译
在本文中,我们开发FaceQVEC,一种软件组件,用于估计ISO / IEC 19794-5中所考虑的每个要点的面部图像的符合性,这是一个质量标准,该标准定义了将它们可接受或不可接受的面部图像的一般质量指南用于官方文件,如护照或身份证。这种质量评估的工具可以有助于提高面部识别的准确性,并确定哪些因素影响给定的面部图像的质量,并采取行动消除或减少这些因素,例如,具有后处理技术或重新获取图像。 FaceQVEC由与上述标准中预期的不同点相关的25个单独测试的自动化,以及被认为与面部质量有关的图像的其他特征。我们首先包括在现实条件下捕获的开发数据集上评估的质量测试的结果。我们使用这些结果来调整每个测试的判定阈值。然后,我们再次在评估数据库中再次检查,该评估数据库包含在开发期间未见的新脸部图像。评估结果展示了个人测试的准确性,用于检查遵守ISO / IEC 19794-5。 Faceqvec可在线获取(https://github.com/uam-biometrics/faceqvec)。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
Objective methods for assessing perceptual image quality have traditionally attempted to quantify the visibility of errors between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a Structural Similarity Index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000. 1
translated by 谷歌翻译
智能手机已经使用基于生物识别的验证系统,以在高度敏感的应用中提供安全性。视听生物识别技术因其可用性而受欢迎,并且由于其多式化性质,欺骗性将具有挑战性。在这项工作中,我们介绍了一个在五个不同最近智能手机中捕获的视听智能手机数据集。考虑到不同的现实情景,这个新数据集包含在三个不同的会话中捕获的103个科目。在该数据集中获取三种不同的语言,以包括扬声器识别系统的语言依赖性问题。这些数据集的这些独特的特征将为实施新的艺术技术的单向或视听扬声器识别系统提供途径。我们还报告了DataSet上的基准标记的生物识别系统的性能。生物识别算法的鲁棒性朝向具有广泛实验的重播和合成信号等信号噪声,设备,语言和呈现攻击等多种依赖性。获得的结果提出了许多关于智能手机中最先进的生物识别方法的泛化特性的担忧。
translated by 谷歌翻译
横梁面部识别(CFR)旨在识别个体,其中比较面部图像源自不同的感测模式,例如红外与可见的。虽然CFR由于与模态差距相关的面部外观的显着变化,但CFR具有比经典的面部识别更具挑战性,但它在具有有限或挑战的照明的场景中,以及在呈现攻击的情况下,它是优越的。与卷积神经网络(CNNS)相关的人工智能最近的进展使CFR的显着性能提高了。由此激励,这项调查的贡献是三倍。我们提供CFR的概述,目标是通过首先正式化CFR然后呈现具体相关的应用来比较不同光谱中捕获的面部图像。其次,我们探索合适的谱带进行识别和讨论最近的CFR方法,重点放在神经网络上。特别是,我们提出了提取和比较异构特征以及数据集的重新访问技术。我们枚举不同光谱和相关算法的优势和局限性。最后,我们讨论了研究挑战和未来的研究线。
translated by 谷歌翻译
可取消的生物识别性是指一组技术,其中生物识别输入在处理或存储前用键有意地转换。该转换是可重复的,可以实现后续生物特征比较。本文介绍了一种可消除生物识别性的新方案,旨在保护模板免受潜在攻击,适用于任何基于生物识别的识别系统。我们所提出的方案基于从变形随机生物识别信息获得的时变键。给出了面部生物识别技术的实验实施。结果证实,该方法能够在提高识别性能的同时抵抗泄漏攻击。
translated by 谷歌翻译
本文提出和评估了一种用于脑电图(EEG)信号分类的基于新的基于实例的方法。 EEG信号的非静止性质,与具有有限培训数据的苛刻的模式识别以及潜在的嘈杂的信号采集条件相结合,并且具有潜在的嘈杂的信号采集条件,这是在本研究中报告的工作。所提出的自适应模板增强机制通过单独处理每个特征维度来改变特征级实例,因此导致改进的类别分离和更好的查询类匹配。将提出的基于实例的学习算法与许多情况下的一些相关算法进行了比较。使用单个干燥传感器的低成本系统获得的临床级64电极EEG数据库以及使用低成本系统获得的低质量(高噪声水平)EEG数据库已用于生物识别人员识别中的评估。所提出的方法在识别和验证方案中表明了显着提高的分类准确性。特别是,看到这种新方法可以为嘈杂的EEG数据提供良好的分类性能,表明其适用于各种应用的可能性。
translated by 谷歌翻译
对医疗保健监控的远程工具的需求从未如此明显。摄像机测量生命体征利用成像装置通过分析人体的图像来计算生理变化。建立光学,机器学习,计算机视觉和医学的进步这些技术以来的数码相机的发明以来已经显着进展。本文介绍了对生理生命体征的相机测量综合调查,描述了它们可以测量的重要标志和实现所做的计算技术。我涵盖了临床和非临床应用以及这些应用需要克服的挑战,以便从概念上推进。最后,我描述了对研究社区可用的当前资源(数据集和代码),并提供了一个全面的网页(https://cameravitals.github.io/),其中包含这些资源的链接以及其中引用的所有文件的分类列表文章。
translated by 谷歌翻译
深度信息在许多图像处理应用程序中是有用的。然而,由于拍摄图像是在2D成像传感器上投射3D场景的过程,因此深度信息嵌入图像中。从图像中提取深度信息是一个具有挑战性的任务。引导原理是由于散焦引起的蓝色水平与物体和焦平面之间的距离有关。基于该原理和广泛使用的假设,即高斯模糊是散焦模糊的良好模型,我们制定了作为高斯模糊分类问题的空间变化散焦模糊的问题。我们通过培训深度神经网络来解决图像补丁中的20级蓝色蓝色之一来解决问题。我们创建了一个超过500000美元的尺寸为32 \ times32 $的数据集,用于培训和测试几种知名网络模型。我们发现MobileNetv2由于其较低的内存要求和高精度而适用于此应用。训练模型用于确定通过施加迭代加权引导滤波器来改进的贴剂模糊。结果是散焦图,其携带每个像素的模糊度的信息。我们将提出的方法与最先进的技术进行比较,我们展示了其在自适应图像增强,散焦倍率和多聚焦图像融合中的成功应用。
translated by 谷歌翻译
由于长距离,照明变化,有限的用户合作和移动科目,虹膜分割和定位在不受约束环境中具有挑战性。为了解决这个问题,我们介绍了一个U-Net,具有预先培训的MobileNetv2深神经网络方法。我们使用MobileNetv2的预先训练的权重,用于想象成数据集,并在虹膜识别和本地化域上进行微调。此外,我们推出了一个名为Kartalol的新数据集,以更好地评估虹膜识别方案中的检测器。为了提供域适应,我们可以在Casia-Iris-Asia,Casia-Iris-M1和Casia-Iris-Africa和Casia-Iris-Africa和我们的数据集中微调MobileNetv2模型。我们还通过执行左右翻转,旋转,缩放和亮度来增强数据。我们通过迭代所提供的数据集中的图像来选择二进制掩码的二值化阈值。沿着Kartalol DataSet,Casia-Iris-Asia,Casia-Iris-M1,Casia-Iris-M1,Casia-Iris-M1,Casia-Iris-M1,Casia-Iris-M1,Casia-Iris-M1培训。实验结果强调了我们的方法在基于移动的基准上超越了最先进的方法。代码和评估结果在https://github.com/jalilnkh/kartalol-nir -isl2021031301上公开可用。
translated by 谷歌翻译
近年来,基于生理信号的认证表现出伟大的承诺,因为其固有的对抗伪造的鲁棒性。心电图(ECG)信号是最广泛研究的生物关像,也在这方面获得了最高的关注。已经证明,许多研究通过分析来自不同人的ECG信号,可以识别它们,可接受的准确性。在这项工作中,我们展示了EDITH,EDITH是一种基于深入的ECG生物识别认证系统的框架。此外,我们假设并证明暹罗架构可以在典型的距离指标上使用,以提高性能。我们使用4个常用的数据集进行了评估了伊迪丝,并使用少量节拍表现优于先前的工作。 Edith使用仅单一的心跳(精度为96-99.75%)进行竞争性,并且可以通过融合多个节拍(从3到6个节拍的100%精度)进一步提高。此外,所提出的暹罗架构管理以将身份验证等错误率(eer)降低至1.29%。具有现实世界实验数据的Edith的有限案例研究还表明其作为实际认证系统的潜力。
translated by 谷歌翻译