了解训练具有整流线性单元(RELUS)的训练简单神经网络的计算复杂性最近是一项深入研究的主题。缩小差距和文献的补充结果,我们提供了有关训练两层relu网络的参数复杂性相对于各种损失函数的几个结果。经过对其他参数的简要讨论,我们着重分析培训数据对计算复杂性的尺寸$ d $的影响。我们根据w [1]的参数$ d $提供运行时间的下限,并证明已知的蛮力策略基本上是最佳的(假设指数时间假设)。与以前的工作相比,我们的结果适用于广泛(ER)范围的损失功能,包括[0,\ infty] $中的所有$ p \ for $ \ ell^p $ -loss。特别是,我们将已知的多项式时间算法扩展到常数$ d $,并将凸损失函数扩展到更一般的损耗函数,在这些情况下,我们的运行时间下限也匹配。
translated by 谷歌翻译
We consider the algorithmic problem of finding the optimal weights and biases for a two-layer fully connected neural network to fit a given set of data points. This problem is known as empirical risk minimization in the machine learning community. We show that the problem is $\exists\mathbb{R}$-complete. This complexity class can be defined as the set of algorithmic problems that are polynomial-time equivalent to finding real roots of a polynomial with integer coefficients. Furthermore, we show that arbitrary algebraic numbers are required as weights to be able to train some instances to optimality, even if all data points are rational. Our results hold even if the following restrictions are all added simultaneously. $\bullet$ There are exactly two output neurons. $\bullet$ There are exactly two input neurons. $\bullet$ The data has only 13 different labels. $\bullet$ The number of hidden neurons is a constant fraction of the number of data points. $\bullet$ The target training error is zero. $\bullet$ The ReLU activation function is used. This shows that even very simple networks are difficult to train. The result explains why typical methods for $\mathsf{NP}$-complete problems, like mixed-integer programming or SAT-solving, cannot train neural networks to global optimality, unless $\mathsf{NP}=\exists\mathbb{R}$. We strengthen a recent result by Abrahamsen, Kleist and Miltzow [NeurIPS 2021].
translated by 谷歌翻译
在本文中,我们在具有线性阈值激活功能的神经网络上提出了新的结果。我们精确地表征了这种神经网络可表示的功能,并且显示2个隐藏层是必要的并且足以表示类中可表示的任何功能。鉴于使用其他流行的激活功能的神经网络的最近精确的可比性调查,这是一个令人惊讶的结果,这些功能使用其他流行的激活功能,如整流的线性单元(Relu)。我们还给出了代表类中任意函数所需的神经网络的大小的精确界限。最后,我们设计了一种算法来解决具有固定架构的这些神经网络的全球最优性的经验风险最小化(ERM)问题。如果输入维度和网络架构的大小被认为是固定常数,则算法的运行时间是数据样本大小的多项式。该算法的意义上是独一无二的,即它适用于任何数量的层数,而先前的多项式时间全局最佳算法仅适用于非常受限制的架构类。
translated by 谷歌翻译
我们有助于更好地理解由具有Relu激活和给定架构的神经网络表示的功能。使用来自混合整数优化,多面体理论和热带几何的技术,我们为普遍近似定理提供了数学逆向,这表明单个隐藏层足以用于学习任务。特别是,我们调查完全可增值功能是否完全可以通过添加更多层(没有限制大小)来严格增加。由于它为神经假设类别代表的函数类提供给算法和统计方面,这个问题对算法和统计方面具有潜在的影响。然而,据我们所知,这个问题尚未在神经网络文学中调查。我们还在这些神经假设类别中代表功能所需的神经网络的大小上存在上限。
translated by 谷歌翻译
计算Wassersein BaryCenters(A.K.A.最佳运输重构)是由于数据科学的许多应用,最近引起了相当大的关注的几何问题。虽然存在任何固定维度的多项式时间算法,但所有已知的运行时间都在维度中呈指数级。这是一个开放的问题,无论是这种指数依赖性是否可改进到多项式依赖性。本文证明,除非P = NP,答案是否定的。这揭示了Wassersein的BaryCenter计算的“维度诅咒”,其不会发生最佳运输计算。此外,我们对计算Wassersein的硬度结果延伸到近似计算,看似简单的问题案例,以及在其他最佳运输指标中平均概率分布。
translated by 谷歌翻译
鉴于神经网络,训练数据和阈值,已知它是NP-HARD,用于找到神经网络的权重,使得总误差低于阈值。我们精确地确定了这种基本问题的算法复杂性,通过表示它是$ \存在\ mathbb r $ -complete。这意味着问题是等同的,达到多项式时间减少,以决定多项式方程和具有整数系数的不等式和真实未知的不平等是否具有解决方案。如果广泛预期,$ \存在\ MathBB r $严格大于NP,我们的工作意味着培训神经网络的问题甚至不是在NP中。通常使用反向化的一些变异培训神经网络。本文的结果提供了一种解释,为什么常用的技术常用于NP完全问题的大实例似乎不用于此任务。这种技术的示例是SAT求解器,IP求解器,本地搜索,动态编程,命名几个一般的。
translated by 谷歌翻译
We study the expressibility and learnability of convex optimization solution functions and their multi-layer architectural extension. The main results are: \emph{(1)} the class of solution functions of linear programming (LP) and quadratic programming (QP) is a universal approximant for the $C^k$ smooth model class or some restricted Sobolev space, and we characterize the rate-distortion, \emph{(2)} the approximation power is investigated through a viewpoint of regression error, where information about the target function is provided in terms of data observations, \emph{(3)} compositionality in the form of a deep architecture with optimization as a layer is shown to reconstruct some basic functions used in numerical analysis without error, which implies that \emph{(4)} a substantial reduction in rate-distortion can be achieved with a universal network architecture, and \emph{(5)} we discuss the statistical bounds of empirical covering numbers for LP/QP, as well as a generic optimization problem (possibly nonconvex) by exploiting tame geometry. Our results provide the \emph{first rigorous analysis of the approximation and learning-theoretic properties of solution functions} with implications for algorithmic design and performance guarantees.
translated by 谷歌翻译
本文研究了人工神经网络(NNS)与整流线性单元的表现力。为了将它们作为实际计算的模型,我们介绍了最大仿射算术计划的概念,并显示了它们与NNS之间的等效性有关自然复杂度措施。然后我们使用此结果表明,使用多项式NNS可以解决两个基本组合优化问题,这相当于非常特殊的强多项式时间算法。首先,我们显示,对于带有N $节点的任何无向图形,有一个NN大小$ \ Mathcal {O}(n ^ 3)$,它将边缘权重用为输入,计算最小生成树的值图表。其次,我们显示,对于任何带有$ N $节点和$ M $弧的任何定向图,都有一个尺寸$ \ mathcal {o}(m ^ 2n ^ 2)$,它将电弧容量作为输入和计算最大流量。这些结果尤其尤其暗示,相应的参数优化问题的解决方案可以在多项式空间中编码所有边缘权重或电弧容量的方法,并在多项式时间中进行评估,并且由NN提供这种编码。
translated by 谷歌翻译
K-MEDIAN和K-MEACE是聚类算法的两个最受欢迎的目标。尽管有密集的努力,但对这些目标的近似性很好地了解,特别是在$ \ ell_p $ -metrics中,仍然是一个重大的开放问题。在本文中,我们在$ \ ell_p $ -metrics中显着提高了文献中已知的近似因素的硬度。我们介绍了一个名为Johnson覆盖假说(JCH)的新假设,这大致断言设定系统上的良好的Max K-Coverage问题难以近似于1-1 / e,即使是成员图形设置系统是Johnson图的子图。然后,我们展示了Cohen-Addad和Karthik引入的嵌入技术的概括(Focs'19),JCH意味着K-MEDIAN和K-MERION在$ \ ell_p $ -metrics中的近似结果的近似值的硬度为近距离对于一般指标获得的人。特别地,假设JCH我们表明很难近似K-Meator目标:$ \ Bullet $离散情况:$ \ ell_1 $ 3.94 - $ \ ell_2中的1.73因素为1.73倍$$ - 这分别在UGC下获得了1.56和1.17的先前因子。 $ \ bullet $持续案例:$ \ ell_1 $ 2210 - $ \ ell_2 $的$ \ ell_1 $ 210。$ \ ell_2 $-metric;这在UGC下获得的$ \ ell_2 $的$ \ ell_2 $的先前因子提高了1.07。对于K-Median目标,我们还获得了类似的改进。此外,我们使用Dinure等人的工作证明了JCH的弱版本。 (Sicomp'05)在超图顶点封面上,恢复Cohen-Addad和Karthik(Focs'19 Focs'19)上面的所有结果(近)相同的不可识别因素,但现在在标准的NP $ \ NEQ $ P假设下(代替UGC)。
translated by 谷歌翻译
由于机器学习,统计和科学的应用,多边缘最佳运输(MOT)引起了极大的兴趣。但是,在大多数应用中,MOT的成功受到缺乏有效算法的严重限制。实际上,MOT一般需要在边际K及其支撑大小n的数量中指数时间n。本文开发了一个关于“结构”在poly(n,k)时间中可溶解的一般理论。我们开发了一个统一的算法框架,用于通过表征不同算法所需的“结构”来解决poly(n,k)时间中的MOT,这是根据双重可行性甲骨文的简单变体所需的。该框架有几个好处。首先,它使我们能够证明当前是最流行的MOT算法的Sinkhorn算法比其他算法要在poly(n,k)时间中求解MOT所需的结构更严格。其次,我们的框架使得为给定的MOT问题开发poly(n,k)时间算法变得更加简单。特别是(大约)解决双重可行性Oracle是必要和足够的 - 这更适合标准算法技术。我们通过为三个通用类成本结构类别的poly(n,k)时间算法开发poly(n,k)时间算法来说明这种易用性:(1)图形结构; (2)设定优化结构; (3)低阶和稀疏结构。对于结构(1),我们恢复了Sindhorn具有poly(n,k)运行时的已知结果;此外,我们为计算精确且稀疏的解决方案提供了第一个poly(n,k)时间算法。对于结构(2) - (3),我们给出了第一个poly(n,k)时间算法,甚至用于近似计算。这三个结构一起涵盖了许多MOT的当前应用。
translated by 谷歌翻译
我们研究了神经网络中平方损耗训练问题的优化景观和稳定性,但通用非线性圆锥近似方案。据证明,如果认为非线性圆锥近似方案是(以适当定义的意义)比经典线性近似方法更具表现力,并且如果存在不完美的标签向量,则在方位损耗的训练问题必须在其中不稳定感知其解决方案集在训练数据中的标签向量上不连续地取决于标签向量。我们进一步证明对这些不稳定属性负责的效果也是马鞍点出现的原因和杂散的局部最小值,这可能是从全球解决方案的任意遥远的,并且既不训练问题也不是训练问题的不稳定性通常,杂散局部最小值的存在可以通过向目标函数添加正则化术语来克服衡量近似方案中参数大小的目标函数。无论可实现的可实现性是否满足,后一种结果都被证明是正确的。我们表明,我们的分析特别适用于具有可变宽度的自由结插值方案和深层和浅层神经网络的培训问题,其涉及各种激活功能的任意混合(例如,二进制,六骨,Tanh,arctan,软标志, ISRU,Soft-Clip,SQNL,Relu,Lifley Relu,Soft-Plus,Bent Identity,Silu,Isrlu和ELU)。总之,本文的发现说明了神经网络和一般非线性圆锥近似仪器的改进近似特性以直接和可量化的方式与必须解决的优化问题的不期望的性质链接,以便训练它们。
translated by 谷歌翻译
训练神经网络的一种常见方法是将所有权重初始化为独立的高斯向量。我们观察到,通过将权重初始化为独立对,每对由两个相同的高斯向量组成,我们可以显着改善收敛分析。虽然已经研究了类似的技术来进行随机输入[Daniely,Neurips 2020],但尚未使用任意输入进行分析。使用此技术,我们展示了如何显着减少两层relu网络所需的神经元数量,均在逻辑损失的参数化设置不足的情况下,大约$ \ gamma^{ - 8} $ [Ji and telgarsky,ICLR, 2020]至$ \ gamma^{ - 2} $,其中$ \ gamma $表示带有神经切线内核的分离边距,以及在与平方损失的过度参数化设置中,从大约$ n^4 $ [song [song]和Yang,2019年]至$ n^2 $,隐含地改善了[Brand,Peng,Song和Weinstein,ITCS 2021]的近期运行时间。对于参数不足的设置,我们还证明了在先前工作时改善的新下限,并且在某些假设下是最好的。
translated by 谷歌翻译
聚类是无监督学习中的基本原始,它引发了丰富的计算挑战性推理任务。在这项工作中,我们专注于将$ D $ -dimential高斯混合的规范任务与未知(和可能的退化)协方差集成。最近的作品(Ghosh等人。恢复在高斯聚类实例中种植的某些隐藏结构。在许多类似的推理任务上的工作开始,这些较低界限强烈建议存在群集的固有统计到计算间隙,即群集任务是\ yringit {statistically}可能但没有\ texit {多项式 - 时间}算法成功。我们考虑的聚类任务的一个特殊情况相当于在否则随机子空间中找到种植的超立体载体的问题。我们表明,也许令人惊讶的是,这种特定的聚类模型\ extent {没有展示}统计到计算间隙,即使在这种情况下继续应用上述的低度和SOS下限。为此,我们提供了一种基于Lenstra - Lenstra - Lovasz晶格基础减少方法的多项式算法,该方法实现了$ D + 1 $样本的统计上最佳的样本复杂性。该结果扩展了猜想统计到计算间隙的问题的类问题可以通过“脆弱”多项式算法“关闭”,突出显示噪声在统计到计算间隙的发作中的关键而微妙作用。
translated by 谷歌翻译
单调功能和数据集在各种应用中都会出现。我们研究单调数据集的插值问题:输入是带有$ n $点的单调数据集,目标是找到一个大小和深度有效的单调神经网络,具有非负参数和阈值单元,可以插入数据放。我们表明,单调数据集无法通过深度$ 2 $的单调网络插值。另一方面,我们证明,对于每个单调数据集,在$ \ mathbb {r}^d $中$ n $点,存在一个插值的单调网络,该网络的深度为$ 4 $ $ 4 $和size $ o(nd)$。我们的插值结果意味着,每个单调功能超过$ [0,1]^d $可以通过DEPTH-4单调网络任意地近似,从而改善了先前最著名的深度构建$ d+1 $。最后,基于布尔电路复杂性的结果,我们表明,当近似单调函数时,具有正参数的电感偏差会导致神经元数量的超顺式爆炸。
translated by 谷歌翻译
高维统计数据的一个基本目标是检测或恢复嘈杂数据中隐藏的种植结构(例如低级别矩阵)。越来越多的工作研究低级多项式作为此类问题的计算模型的限制模型:在各种情况下,数据的低级多项式可以与最知名的多项式时间算法的统计性能相匹配。先前的工作已经研究了低度多项式的力量,以检测隐藏结构的存在。在这项工作中,我们将这些方法扩展到解决估计和恢复问题(而不是检测)。对于大量的“信号加噪声”问题,我们给出了一个用户友好的下限,以获得最佳的均衡误差。据我们所知,这些是建立相关检测问题的恢复问题低度硬度的第一个结果。作为应用,我们对种植的子静脉和种植的密集子图问题的低度最小平方误差进行了严格的特征,在两种情况下都解决了有关恢复的计算复杂性的开放问题(在低度框架中)。
translated by 谷歌翻译
经典群集编辑问题(也称为相关群集)要求将给定图转换为少数边缘修改的群体(群集)的不相交联盟。当应用于顶点 - 彩色的图表(表示子组的颜色)时,NP-Hard群集编辑问题的标准算法可以产生偏向于数据的修改数量的数据(例如,人口组)的子组(例如,人口统计组)的子组的解决方案子组的成员。我们提出了一个修改公平限制,确保了对每个子组的编辑数量与其大小成正比。首先,我们研究具有两个顶点颜色的图形修改公平群集编辑。我们表明,即使只能在子组内插入边缘,问题也是np-solly;请注意,在经典的“非公平”设置中,这种情况是琐碎的多项式可解决。然而,在更通用的编辑形式中,修改公平的变体仍然是关于边缘编辑的数量的固定参数。我们补充了这些和进一步的理论结果,对我们在真实社交网络上的模型的实证分析,我们发现修改公平性的价格令人惊讶地低,即最佳修改公平的成本与最佳成本不同“非公平”解决方案只有小百分比。
translated by 谷歌翻译
我们给出了第一个多项式算法来估计$ d $ -variate概率分布的平均值,从$ \ tilde {o}(d)$独立的样本受到纯粹的差异隐私的界限。此问题的现有算法无论是呈指数运行时间,需要$ \ OMEGA(D ^ {1.5})$样本,或仅满足较弱的集中或近似差分隐私条件。特别地,所有先前的多项式算法都需要$ d ^ {1+ \ omega(1)} $ samples,以保证“加密”高概率,1-2 ^ { - d ^ {\ omega(1) $,虽然我们的算法保留$ \ tilde {o}(d)$ SAMPS复杂性即使在此严格设置中也是如此。我们的主要技术是使用强大的方块方法(SOS)来设计差异私有算法的新方法。算法的证据是在高维算法统计数据中的许多近期作品中的一个关键主题 - 显然需要指数运行时间,但可以通过低度方块证明可以捕获其分析可以自动变成多项式 - 时间算法具有相同的可证明担保。我们展示了私有算法的类似证据现象:工作型指数机制的实例显然需要指数时间,但可以用低度SOS样张分析的指数时间,可以自动转换为多项式差异私有算法。我们证明了捕获这种现象的元定理,我们希望在私人算法设计中广泛使用。我们的技术还在高维度之间绘制了差异私有和强大统计数据之间的新连接。特别是通过我们的校验算法镜头来看,几次研究的SOS证明在近期作品中的算法稳健统计中直接产生了我们差异私有平均估计算法的关键组成部分。
translated by 谷歌翻译
我们介绍了可以由具有Maxout单位的人造馈电神经网络表示的功能线性区域的数量。排名kaxout单元是一个函数,计算$ k $线性函数的最大值。对于具有单层Maxout单元的网络,线性区域对应于Minkowski多型的上顶点。我们根据热带超曲面的交点或部分Minkowski总和的上面数,以及任何输入维度的区域数,任何单位数量,任何等级,任何等级,任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,在有和没有偏见的情况下。基于这些结果,我们还为具有多层的网络获得了渐近的上限。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
我们探索稀疏优化问题的算法和局限性,例如稀疏线性回归和稳健的线性回归。稀疏线性回归问题的目的是确定少数关键特征,而强大的线性回归问题的目标是确定少量错误的测量值。具体而言,稀疏线性回归问题寻求$ k $ -sparse vector $ x \ in \ mathbb {r}^d $以最小化$ \ | ax-b \ | _2 $,给定输入矩阵$ a \ in \ mathbb in \ mathbb {r}^{n \ times d} $和一个目标向量$ b \ in \ mathbb {r}^n $,而强大的线性回归问题寻求一个$ s $ s $,最多可以忽略$ k $行和a向量$ x $最小化$ \ |(ax-b)_s \ | _2 $。我们首先显示了在[OWZ15]工作上稳健回归构建的近似近似值的双晶格,这意味着稀疏回归的结果相似。我们通过减少$ k $ clique的猜想,进一步显示出稳健回归的精细颗粒硬度。在正面,我们给出了一种鲁棒回归的算法,该算法可实现任意准确的添加误差,并使用运行时与从细粒硬度结果中的下界紧密匹配的运行时,以及与类似运行时稀疏回归的算法。我们的上限和下限都依赖于从鲁棒线性回归到我们引入的稀疏回归的一般减少。我们的算法受到3SUM问题的启发,使用大约最近的邻居数据结构,并且可能具有独立的兴趣来解决稀疏优化问题。例如,我们证明我们的技术也可以用于研究稀疏的PCA问题。
translated by 谷歌翻译