可解释的NLP(EXNLP)越来越关注收集人类注释的文本解释。这些解释在三种方面使用下游:作为数据增强,以提高预测任务的性能,因为对培训模型的监督,为他们的预测产生解释,以及评估模型生成的解释的理论。在本次审查中,我们识别65个具有三个主要类别的文本解释的数据集(突出显示,自由文本和结构),组织关于注释每种类型的文献,识别现有收集方法的优势和缺点,并为收集EXNLP数据集提供建议在将来。
translated by 谷歌翻译
情绪分析中最突出的任务是为文本分配情绪,并了解情绪如何在语言中表现出来。自然语言处理的一个重要观察结果是,即使没有明确提及情感名称,也可以通过单独参考事件来隐式传达情绪。在心理学中,被称为评估理论的情感理论类别旨在解释事件与情感之间的联系。评估可以被形式化为变量,通过他们认为相关的事件的人们的认知评估来衡量认知评估。其中包括评估事件是否是新颖的,如果该人认为自己负责,是否与自己的目标以及许多其他人保持一致。这样的评估解释了哪些情绪是基于事件开发的,例如,新颖的情况会引起惊喜或不确定后果的人可能引起恐惧。我们在文本中分析了评估理论对情绪分析的适用性,目的是理解注释者是否可以可靠地重建评估概念,如果可以通过文本分类器预测,以及评估概念是否有助于识别情感类别。为了实现这一目标,我们通过要求人们发短信描述触发特定情绪并披露其评估的事件来编译语料库。然后,我们要求读者重建文本中的情感和评估。这种设置使我们能够衡量是否可以纯粹从文本中恢复情绪和评估,并为判断模型的绩效指标提供人体基准。我们将文本分类方法与人类注释者的比较表明,两者都可以可靠地检测出具有相似性能的情绪和评估。我们进一步表明,评估概念改善了文本中情绪的分类。
translated by 谷歌翻译
随着近期自然语言生成(NLG)模型的各种应用程序的改进,它变得必须具有识别和评估NLG输出是否仅共享关于外部世界的可验证信息的手段。在这项工作中,我们提出了一个归属于识别的来源(AIS)的新评估框架,用于评估自然语言生成模型的输出,当这种输出涉及外部世界时。我们首先定义AIS,并引入两级注释管道,用于允许注释器根据AIS指南适当地评估模型输出。通过人为评估研究,我们在三个代数据集(会话QA域中的两个中和总结一下,概括地验证了这种方法,表明AIS可以作为测量模型生成的语句是否支持基础来源的常见框架。我们释放人类评估研究指南。
translated by 谷歌翻译
大型语言模型越来越能够通过相对较少的特定任务的监督产生流畅的出现文本。但这些模型可以准确解释分类决策吗?我们考虑使用少量人写的例子(即,以几滴方式)生成自由文本解释的任务。我们发现(1)创作更高质量的例子,以提示导致更高质量的世代; (2)令人惊讶的是,在头到头比较中,人群公司通常更喜欢GPT-3生成的解释,以众包中包含的人性写入的解释。然而,Crowdworker评级也表明,虽然模型产生了事实,语法和充分的解释,但它们具有改进的空间,例如沿着提供新颖信息和支持标签的轴。我们创建了一种管道,该管道将GPT-3与监督过滤器结合起来,该过滤器通过二进制可接受性判断来包含人类循环。尽管具有重要的主观性内在的判断可接受性,但我们的方法能够始终如一地过滤人类可接受的GPT-3生成的解释。
translated by 谷歌翻译
自动错误通常涉及培训数据和学习过程,调试机器学习模型很难。如果我们没有关于模型如何实际工作的线索,这变得更加困难。在这项调查中,我们审查了利用解释的论文使人类提供反馈和调试NLP模型。我们称这个问题解释为基础的人类调试(EBHD)。特别是,我们沿着EBHD的三个维度(错误上下文,工作流程和实验设置)分类和讨论现有工作,编译EBHD组件如何影响反馈提供商的调查结果,并突出可能是未来的研究方向的打开问题。
translated by 谷歌翻译
预测任务标签和为其预测生成自由文本阐述的自律化模型可以实现与NLP系统更直观的交互。然而,这些模型目前正在接受大量人为的自由文本解释,每个任务都会阻碍更广泛的使用。我们建议使用少数培训例子研究更现实的自律化建立。我们出示2月 - 一个标准化的四个现有英语数据集和相关指标。我们通过2月份广泛探索自然语言提示来确定正确的提示方法。然后,通过使用此提示并缩放模型大小,我们证明了几次拍摄自合合理化的进展。我们展示了这项任务的完善房间仍然有充足的改进空间:人类注册人评估的生成解释的平均合理性最多为51%,而人类解释的合理性是76%。我们希望2月份与我们的拟议方法一起促使社区承担几次拍摄的自我合理化挑战。
translated by 谷歌翻译
为了实现长文档理解的构建和测试模型,我们引入质量,具有中文段的多项选择QA DataSet,具有约5,000个令牌的平均长度,比典型的当前模型更长。与经过段落的事先工作不同,我们的问题是由阅读整个段落的贡献者编写和验证的,而不是依赖摘要或摘录。此外,只有一半的问题是通过在紧缩时间限制下工作的注释器来应答,表明略读和简单的搜索不足以一直表现良好。目前的模型在此任务上表现不佳(55.4%),并且落后于人类性能(93.5%)。
translated by 谷歌翻译
构建用于仇恨语音检测的基准数据集具有各种挑战。首先,因为仇恨的言论相对少见,随机抽样对诠释的推文是非常效率的发现仇恨。为了解决此问题,先前的数据集通常仅包含匹配已知的“讨厌字”的推文。然而,将数据限制为预定义的词汇表可能排除我们寻求模型的现实世界现象的部分。第二个挑战是仇恨言论的定义往往是高度不同和主观的。具有多种讨论仇恨言论的注释者可能不仅可能不同意彼此不同意,而且还努力符合指定的标签指南。我们的重点识别是仇恨语音的罕见和主体性类似于信息检索(IR)中的相关性。此连接表明,可以有效地应用创建IR测试集合的良好方法,以创建更好的基准数据集以进行仇恨语音。为了智能和有效地选择要注释的推文,我们应用{\ em汇集}和{em主动学习}的标准IR技术。为了提高注释的一致性和价值,我们应用{\ EM任务分解}和{\ EM注释器理由}技术。我们在Twitter上共享一个用于仇恨语音检测的新基准数据集,其提供比以前的数据集更广泛的仇恨覆盖。在这些更广泛形式的仇恨中测试时,我们还表现出现有检测模型的准确性的戏剧性降低。注册器理由我们不仅可以证明标签决策证明,而且还可以在建模中实现未来的双重监督和/或解释生成的工作机会。我们的方法的进一步细节可以在补充材料中找到。
translated by 谷歌翻译
Winograd架构挑战 - 一套涉及代词参考消歧的双句话,似乎需要使用致辞知识 - 是由2011年的赫克托勒维克斯提出的。到2019年,基于大型预先训练的变压器的一些AI系统基于语言模型和微调这些问题,精度优于90%。在本文中,我们审查了Winograd架构挑战的历史并评估了其重要性。
translated by 谷歌翻译
Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before. In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions; and (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, machine translation, and visual-language generation. This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.
translated by 谷歌翻译
我们提出了一种新颖的三阶段查找解析标签工作流程,用于众包注释,以减少任务指令中的模糊性,从而提高注释质量。第1阶段(查找)询问人群找到其正确标签似乎暧昧的任务指令的示例。还要求工人提供一个简短的标签,它描述了所发现的特定实例体现的模糊概念。我们比较这个阶段的合作与非协作设计。在第2阶段(解析)中,请求者选择一个或多个这些模糊的例子到标签(解析歧义)。新标签将自动注入任务说明,以提高清晰度。最后,在第3阶段(标签)中,工人使用经修订的指南进行实际注释,澄清示例。我们比较三个使用这些示例的设计:仅限示例,仅标记或两者。我们通过亚马逊机械土耳其报告六个任务设计中的图像标记实验。结果显示了有关众包注释任务的有效设计的提高的注释准确性和进一步的见解。
translated by 谷歌翻译
虽然通过简单的因素问题回答,文本理解的大量进展,但更加全面理解话语仍然存在重大挑战。批判性地反映出文本的人将造成好奇心驱动,通常是开放的问题,这反映了对内容的深刻理解,并要求复杂的推理来回答。建立和评估这种类型的话语理解模型的关键挑战是缺乏注释数据,特别是因为找到了这些问题的答案(可能根本不回答),需要高度的注释载荷的高认知负荷。本文提出了一种新的范式,使可扩展的数据收集能够针对新闻文件的理解,通过话语镜头查看这些问题。由此产生的语料库DCQA(疑问回答的话语理解)包括在607名英语文件中的22,430个问题答案对组成。 DCQA以自由形式,开放式问题的形式捕获句子之间的话语和语义链接。在评估集中,我们向问题上的问题提交了来自好奇数据集的问题,我们表明DCQA提供了有价值的监督,以回答开放式问题。我们还在使用现有的问答资源设计预训练方法,并使用合成数据来适应不可批售的问题。
translated by 谷歌翻译
随着人工智能系统变得越来越强大和普遍,人们对机器的道德或缺乏道德的关注变得越来越关注。然而,向机器讲授道德是一项艰巨的任务,因为道德仍然是人类中最激烈的争论问题之一,更不用说AI了。但是,部署到数百万用户的现有AI系统已经在做出充满道德影响的决策,这构成了一个看似不可能的挑战:教学机器的道德意义,而人类继续努力努力。为了探索这一挑战,我们介绍了Delphi,这是一个基于深层神经网络的实验框架,直接训练了描述性道德判断,例如,“帮助朋友”通常是不错的,而“帮助朋友传播假新闻”不是。经验结果提供了对机器伦理的承诺和局限性的新见解。面对新的道德情况,德尔菲(Delphi)表现出强大的概括能力,而现成的神经网络模型表现出明显差的判断,包括不公正的偏见,证实了对明确教学机器的道德意义的必要性。然而,德尔菲并不完美,表现出对普遍性偏见和不一致的敏感性。尽管如此,我们还是展示了不完美的Delphi的积极用例,包括在其他不完美的AI系统中将其用作组件模型。重要的是,我们根据著名的道德理论来解释Delphi的运营化,这使我们提出了重要的未来研究问题。
translated by 谷歌翻译
多模型对现实世界应用的承诺激发了可视化和理解其内部力学的研究,其最终目标是使利益相关者能够可视化模型行为,执行模型调试并促进对机器学习模型的信任。但是,现代的多模型模型通常是黑盒神经网络,这使得了解其内部力学变得具有挑战性。我们如何能在这些模型中可视化多模式相互作用的内部建模?我们的论文旨在通过提出Multiviz来填补这一空白,这是一种通过将可解释性问题分为4个阶段来分析多模型模型行为的方法:(1)单峰的重要性:每种模式如何有助于下游建模和预测,(2)交叉交叉。 - 模式相互作用:不同模态如何相互关系,(3)多模式表示:如何在决策级特征中表示单峰和跨模式的交互作用,以及(4)多模式预测:决策级特征如何组成以制造一个预言。 Multiviz旨在在不同的模式,模型,任务和研究领域进行操作。通过对6个现实世界任务的8个训练模型的实验,我们表明,Multiviz中的互补阶段共同使用户能够(1)模拟模型预测,(2)将可解释的概念分配给功能,(3)对模型错误分析执行错误分析,(4)使用错误分析到调试模型的见解。 Multiviz公开可用,将定期使用新的解释工具和指标进行更新,并欢迎社区的意见。
translated by 谷歌翻译
As large language models (LLMs) grow larger and more sophisticated, assessing their "reasoning" capabilities in natural language grows more challenging. Recent question answering (QA) benchmarks that attempt to assess reasoning are often limited by a narrow scope of covered situations and subject matters. We introduce WikiWhy, a QA dataset built around a novel auxiliary task: explaining why an answer is true in natural language. WikiWhy contains over 9,000 "why" question-answer-rationale triples, grounded on Wikipedia facts across a diverse set of topics. Each rationale is a set of supporting statements connecting the question to the answer. WikiWhy serves as a benchmark for the reasoning capabilities of LLMs because it demands rigorous explicit rationales for each answer to demonstrate the acquisition of implicit commonsense knowledge, which is unlikely to be easily memorized. GPT-3 baselines achieve only 38.7% human-evaluated correctness in the end-to-end answer & explain condition, leaving significant room for future improvements.
translated by 谷歌翻译
Visual understanding goes well beyond object recognition. With one glance at an image, we can effortlessly imagine the world beyond the pixels: for instance, we can infer people's actions, goals, and mental states. While this task is easy for humans, it is tremendously difficult for today's vision systems, requiring higher-order cognition and commonsense reasoning about the world. We formalize this task as Visual Commonsense Reasoning. Given a challenging question about an image, a machine must answer correctly and then provide a rationale justifying its answer.Next, we introduce a new dataset, VCR, consisting of 290k multiple choice QA problems derived from 110k movie scenes. The key recipe for generating non-trivial and highquality problems at scale is Adversarial Matching, a new approach to transform rich annotations into multiple choice questions with minimal bias. Experimental results show that while humans find VCR easy (over 90% accuracy), state-of-the-art vision models struggle (∼45%).To move towards cognition-level understanding, we present a new reasoning engine, Recognition to Cognition Networks (R2C), that models the necessary layered inferences for grounding, contextualization, and reasoning. R2C helps narrow the gap between humans and machines (∼65%); still, the challenge is far from solved, and we provide analysis that suggests avenues for future work.
translated by 谷歌翻译
In the last year, new models and methods for pretraining and transfer learning have driven striking performance improvements across a range of language understanding tasks. The GLUE benchmark, introduced a little over one year ago, offers a single-number metric that summarizes progress on a diverse set of such tasks, but performance on the benchmark has recently surpassed the level of non-expert humans, suggesting limited headroom for further research. In this paper we present SuperGLUE, a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, a software toolkit, and a public leaderboard. SuperGLUE is available at super.gluebenchmark.com.
translated by 谷歌翻译
人类具有出色的能力来推理绑架并假设超出图像的字面内容的内容。通过识别散布在整个场景中的具体视觉线索,我们几乎不禁根据我们的日常经验和对世界的知识来提出可能的推论。例如,如果我们在道路旁边看到一个“ 20英里 /小时”的标志,我们可能会假设街道位于居民区(而不是在高速公路上),即使没有房屋。机器可以执行类似的视觉推理吗?我们提出了Sherlock,这是一个带注释的103K图像的语料库,用于测试机器能力,以超出字面图像内容的绑架推理。我们采用免费观看范式:参与者首先观察并识别图像中的显着线索(例如,对象,动作),然后给定线索,然后提供有关场景的合理推论。我们总共收集了363K(线索,推理)对,该对形成了首个绑架的视觉推理数据集。使用我们的语料库,我们测试了三个互补的绑架推理轴。我们评估模型的能力:i)从大型候选人语料库中检索相关推论; ii)通过边界框来定位推论的证据,iii)比较合理的推论,以匹配人类在新收集的19k李克特级判断的诊断语料库上的判断。尽管我们发现具有多任务目标的微调夹RN50x64优于强大的基准,但模型性能与人类一致之间存在着重要的净空。可在http://visualabduction.com/上获得数据,模型和排行榜
translated by 谷歌翻译
Understanding entailment and contradiction is fundamental to understanding natural language, and inference about entailment and contradiction is a valuable testing ground for the development of semantic representations. However, machine learning research in this area has been dramatically limited by the lack of large-scale resources. To address this, we introduce the Stanford Natural Language Inference corpus, a new, freely available collection of labeled sentence pairs, written by humans doing a novel grounded task based on image captioning. At 570K pairs, it is two orders of magnitude larger than all other resources of its type. This increase in scale allows lexicalized classifiers to outperform some sophisticated existing entailment models, and it allows a neural network-based model to perform competitively on natural language inference benchmarks for the first time.
translated by 谷歌翻译
众包NLP数据集的反复挑战是,在制作示例时,人类作家通常会依靠重复的模式,从而导致缺乏语言多样性。我们介绍了一种基于工人和AI协作的数据集创建的新方法,该方法汇集了语言模型的生成力量和人类的评估力量。从现有的数据集,自然语言推理(NLI)的Multinli开始,我们的方法使用数据集制图自动识别示例来证明具有挑战性的推理模式,并指示GPT-3撰写具有相似模式的新示例。然后,机器生成的示例会自动过滤,并最终由人类人群工人修订和标记。最终的数据集Wanli由107,885个NLI示例组成,并在现有的NLI数据集上呈现出独特的经验优势。值得注意的是,培训有关Wanli的模型,而不是Multinli($ 4 $ $倍)可改善我们考虑的七个外域测试集的性能,包括汉斯(Hans)的11%和对抗性NLI的9%。此外,将Multinli与Wanli结合起来比将其与其他NLI增强集相结合更有效。我们的结果表明,自然语言生成技术的潜力是策划增强质量和多样性的NLP数据集。
translated by 谷歌翻译