预测任务标签和为其预测生成自由文本阐述的自律化模型可以实现与NLP系统更直观的交互。然而,这些模型目前正在接受大量人为的自由文本解释,每个任务都会阻碍更广泛的使用。我们建议使用少数培训例子研究更现实的自律化建立。我们出示2月 - 一个标准化的四个现有英语数据集和相关指标。我们通过2月份广泛探索自然语言提示来确定正确的提示方法。然后,通过使用此提示并缩放模型大小,我们证明了几次拍摄自合合理化的进展。我们展示了这项任务的完善房间仍然有充足的改进空间:人类注册人评估的生成解释的平均合理性最多为51%,而人类解释的合理性是76%。我们希望2月份与我们的拟议方法一起促使社区承担几次拍摄的自我合理化挑战。
translated by 谷歌翻译
大型语言模型越来越能够通过相对较少的特定任务的监督产生流畅的出现文本。但这些模型可以准确解释分类决策吗?我们考虑使用少量人写的例子(即,以几滴方式)生成自由文本解释的任务。我们发现(1)创作更高质量的例子,以提示导致更高质量的世代; (2)令人惊讶的是,在头到头比较中,人群公司通常更喜欢GPT-3生成的解释,以众包中包含的人性写入的解释。然而,Crowdworker评级也表明,虽然模型产生了事实,语法和充分的解释,但它们具有改进的空间,例如沿着提供新颖信息和支持标签的轴。我们创建了一种管道,该管道将GPT-3与监督过滤器结合起来,该过滤器通过二进制可接受性判断来包含人类循环。尽管具有重要的主观性内在的判断可接受性,但我们的方法能够始终如一地过滤人类可接受的GPT-3生成的解释。
translated by 谷歌翻译
在维持预审预定序列模型的灵活性的同时,是否有利于常识性推理,这仍然是一个悬而未决的问题。为了调查这个问题,我们开发了生成的知识提示,该提示包括从语言模型中生成知识,然后在回答问题时提供知识作为附加输入。我们的方法不需要特定于任务的监督知识集成或访问结构化的知识库,但它可以提高四个常识性推理任务上的大规模,最先进的模型的性能,从而实现最先进-ART结果取决于数值常识(NumerSense),通用常识性(Commonsenseqa 2.0)和科学常识(QASC)基准。产生的知识促使大型语言模型是灵活的外部知识来源,以改善常识性推理。我们的代码可从https://github.com/liujch1998/gkp获得
translated by 谷歌翻译
本文探讨了提高语言模型的零次学习能力的简单方法。我们表明,指令调整 - 通过对说明书中所述的任务集合微调语言模型 - 大幅提升零射门上看不见任务中的表现。我们采取预训练的语言模型和指令调整它通过自然语言指令模板语言表达了60NLP任务137B参数。我们评估这种指令调整模型,我们称之为FLAN,在看不见的任务类型。FLAN显着改善其未修饰的对应的性能和超过25的20个任务,我们评估零射门175BGPT-3。FLAN甚至GPT-3通过在安利,RTE,BoolQ,AI2-ARC,OpenbookQA和StoryCloze大比分胜过几拍。消融研究显示任务和模型的规模,这个数字是指令调整取得成功的关键组成部分。
translated by 谷歌翻译
最近已被证明大型语言模型在各种任务集中获得合理的零射普通化(Brown等,2020)。它已经假设这是语言模型的隐式多任务学习的结果,在语言模型中的预押(Radford等,2019)。可以通过明确的多任务学习直接引起零拍常规化?为了以缩放测试这个问题,我们开发一个系统,以便轻松地将任何自然语言任务映射到人类可读的提示表单中。我们转换一组大量的监督数据集,每个数据集都有多个提示,具有不同的措辞。这些提示的数据集允许基准测试模型执行完全看不见的任务的能力。我们介绍了一个普拉克尔编码器 - 解码器模型(Raffel等,2020; Lester等,2021),覆盖各种任务。该模型在多个标准数据集中达到强大的零点性能,通常优于其尺寸的型号超过16倍。此外,我们的方法对来自Big-替补基准测试的任务子集具有强烈性能,优于其尺寸的6倍。所有提示和培训的型号都可以在https://github.com/ bigscience-workshop / protectsource / httpsource / https://huggingface.co/bigscience/t0pp。
translated by 谷歌翻译
最近的自然语言理解进展(NLU)已经被驱动,部分是由胶水,超级格,小队等的基准。事实上,许多NLU模型现在在许多任务中匹配或超过“人类水平”性能这些基准。然而,大多数这些基准测试都提供模型访问相对大量的标记数据进行培训。因此,该模型提供了比人类所需的更多数据,以实现强大的性能。这有动机侧重于侧重于改善NLU模型的少量学习性能。然而,缺乏少量射门的标准化评估基准,导致不同纸张中的不同实验设置。为了帮助加速这一工作的工作,我们介绍了线索(受限制的语言理解评估标准),这是评估NLU模型的几次拍摄学习功能的基准。我们证明,虽然最近的模型在获得大量标记数据时达到人类性能,但对于大多数任务,少量拍摄设置中的性能存在巨大差距。我们还展示了几个拍摄设置中替代模型家族和适应技术之间的差异。最后,我们讨论了在设计实验设置时讨论了评估真实少量学习绩效的实验设置,并提出了统一的标准化方法,以获得少量学习评估。我们的目标是鼓励对NLU模型的研究,可以概括为具有少数示例的新任务。线索的代码和数据可以在https://github.com/microsoft/clues提供。
translated by 谷歌翻译
Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
translated by 谷歌翻译
The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF-better few-shot fine-tuning of language models 1 -a suite of simple and complementary techniques for finetuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning. 2 * The first two authors contributed equally. 1 Alternatively, language models' best friends forever. 2 Our implementation is publicly available at https:// github.com/princeton-nlp/LM-BFF.
translated by 谷歌翻译
本文着重于几次NLP任务的文本数据增强。现有的数据增强算法要么使用一个小型培训集来生成新的合成数据,要么利用与任务无关的启发式规则(例如,同义词替代)或微调通用预训练的语言模型(例如GPT2)。因此,这些方法具有特定于任务的知识,并且仅限于在简单任务中为弱基线产生低质量的合成数据。为了解决这个问题,我们提出了知识混合数据增强模型(KNOWDA):使用知识混合培训(KOMT)在不同的NLP任务的混合物上预测的编码器LM。 KOMT是一种培训程序,将各种异质NLP任务的输入示例重新定义为统一的文本到文本格式,并采用不同粒度的目标,以学习生成部分或完整的样本。在KOMT的帮助下,Knowda可以隐含地将所需的特定于任务的知识从任务的混合中隐含地结合在一起,并通过一些给定的实例迅速掌握目标任务的固有综合定律。据我们所知,我们是首次尝试将任务数量扩展到多任务共同培训以进行数据扩展。广泛的实验表明,i)Knowda成功地通过少量基准的基准成功地提高了Albert和Deberta的表现,表现优于先前的最新数据增强基线; ii)KNOWDA还可以改善少数弹药任务的模型性能,这是KOMT中未包含的固定任务类型。
translated by 谷歌翻译
基础模型由于在广泛的下游应用中的有效性而受到了很多关注。尽管在体系结构方面存在很大的融合,但大多数审慎的模型通常仍用于特定任务或模式。在这项工作中,我们建议将语言模型用作各种基础模型的通用接口。一系列预处理的编码者感知到了多种方式(例如视觉和语言),并与扮演通用任务层角色的语言模型对接。我们提出了一个半伴侣的语言建模目标,以共同确定界面和模块化编码器。我们从因果关系和非因果建模中涵盖了优势和能力,从而结合了两个世界的最佳状态。具体而言,所提出的方法不仅从因果语言建模中继承了内在学习和开放式生成的能力,而且由于双向编码器而有利于填补。更重要的是,我们的方法无缝地解锁了上述功能的组合,例如,通过填充编码器启用了文本学习或指导。各种仅语言和视觉语言基准的实验结果表明,我们的模型表现优于或与鉴定,零弹性概括和几乎没有的学习的专业模型竞争。
translated by 谷歌翻译
Recent work has shown that fine-tuning large pre-trained language models on a collection of tasks described via instructions, a.k.a. instruction-tuning, improves their zero and few-shot generalization to unseen tasks. However, there is a limited understanding of the performance trade-offs of different decisions made during the instruction-tuning process. These decisions include the scale and diversity of the instruction-tuning benchmark, different task sampling strategies, fine-tuning with and without demonstrations, training using specialized datasets for reasoning and dialogue, and finally, the fine-tuning objectives themselves. In this paper, we characterize the effect of instruction-tuning decisions on downstream task performance when scaling both model and benchmark sizes. To this end, we create OPT-IML Bench: a large benchmark for Instruction Meta-Learning (IML) of 2000 NLP tasks consolidated into task categories from 8 existing benchmarks, and prepare an evaluation framework to measure three types of model generalizations: to tasks from fully held-out categories, to held-out tasks from seen categories, and to held-out instances from seen tasks. Through the lens of this framework, we first present insights about instruction-tuning decisions as applied to OPT-30B and further exploit these insights to train OPT-IML 30B and 175B, which are instruction-tuned versions of OPT. OPT-IML demonstrates all three generalization abilities at both scales on four different evaluation benchmarks with diverse tasks and input formats -- PromptSource, FLAN, Super-NaturalInstructions, and UnifiedSKG. Not only does it significantly outperform OPT on all benchmarks but is also highly competitive with existing models fine-tuned on each specific benchmark. We release OPT-IML at both scales, together with the OPT-IML Bench evaluation framework.
translated by 谷歌翻译
In this work, we explore "prompt tuning," a simple yet effective mechanism for learning "soft prompts" to condition frozen language models to perform specific downstream tasks. Unlike the discrete text prompts used by GPT-3, soft prompts are learned through backpropagation and can be tuned to incorporate signals from any number of labeled examples. Our end-to-end learned approach outperforms GPT-3's few-shot learning by a large margin. More remarkably, through ablations on model size using T5, we show that prompt tuning becomes more competitive with scale: as models exceed billions of parameters, our method "closes the gap" and matches the strong performance of model tuning (where all model weights are tuned). This finding is especially relevant because large models are costly to share and serve and the ability to reuse one frozen model for multiple downstream tasks can ease this burden. Our method can be seen as a simplification of the recently proposed "prefix tuning" of Li and Liang (2021) and we provide a comparison to this and other similar approaches. Finally, we show that conditioning a frozen model with soft prompts confers benefits in robustness to domain transfer and enables efficient "prompt ensembling." * Work done as a Google AI Resident.
translated by 谷歌翻译
Natural language explanations promise to offer intuitively understandable explanations of a neural network's decision process in complex vision-language tasks, as pursued in recent VL-NLE models. While current models offer impressive performance on task accuracy and explanation plausibility, they suffer from a range of issues: Some models feature a modular design where the explanation generation module is poorly integrated with a separate module for task-answer prediction, employ backbone models trained on limited sets of tasks, or incorporate ad hoc solutions to increase performance on single datasets. We propose to evade these limitations by applying recent advances in large-scale multi-task pretraining of generative Transformer models to the problem of VL-NLE tasks. Our approach outperforms recent models by a large margin, with human annotators preferring the generated explanations over the ground truth in two out of three evaluated datasets. As a novel challenge in VL-NLE research, we propose the problem of multi-task VL-NLE and show that jointly training on multiple tasks can increase the explanation quality. We discuss the ethical implications of high-quality NLE generation and other issues in recent VL-NLE research.
translated by 谷歌翻译
最近,对生成自然语言解释(NLE)的模型的兴趣日益增长。但是,培训提供NLES的模型需要获取特定于任务的NLE,这是时间和资源的。潜在的解决方案是从域的域的域外逆转,通过几次射门传输学习,具有大量NLE的域与具有稀缺的域,但潜在的标签。在这项工作中,我们为几个NLE的案例引入了几次射门转移学习的三种香草方法,但标签很少,以及适应现有的香草微调方法。我们从自然语言推理域中传输解释性,其中人写入的NLES的大型数据集(E-SNLI),到代词解析的域名(1)代词分辨率的域,在那里我们在顶部引入了一个小型数据集Winogrande DataSet(小型e-winogrande)和(2)致辞验证(Comve)。我们的结果表明,NLES的转移优于单项任务方法,并建立四个已确定的培训制度中的最佳策略。我们还在培训数据和模型大小方面调查最佳方法的可扩展性。
translated by 谷歌翻译
In the last year, new models and methods for pretraining and transfer learning have driven striking performance improvements across a range of language understanding tasks. The GLUE benchmark, introduced a little over one year ago, offers a single-number metric that summarizes progress on a diverse set of such tasks, but performance on the benchmark has recently surpassed the level of non-expert humans, suggesting limited headroom for further research. In this paper we present SuperGLUE, a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, a software toolkit, and a public leaderboard. SuperGLUE is available at super.gluebenchmark.com.
translated by 谷歌翻译
大型语言模型在零拍摄设置中的许多自然语言处理(NLP)任务中表现出令人印象深刻的性能。我们询问这些模型是否展示了致辞语言 - NLP应用的关键组成部分 - 通过评估四个偶数基准的模型。我们发现大型语言模型的令人印象深刻的零射击性能主要是由于我们的基准测试中的数据集偏差。我们还表明,零拍摄性能对基准的超参数和相似性敏感到预训练数据集。此外,当在几次拍摄设置中评估模型时,我们没有观察大量改进。最后,与以前的工作相比,我们发现利用明确的致辞知识并没有产生重大改善。
translated by 谷歌翻译
将文本插入段落中指定位置的任务(称为空白(FITB))对于各种应用程序与作家与自然语言生成(NLG)系统互动以制作文本的应用很有用。虽然先前的工作已经通过专门培训的模型来解决此问题,但更有用的模型是可以有效地执行_both_ fitb和延续的模型。在这项工作中,我们评估了使用单个模型完成这两个任务的可行性。我们表明,通过FITB式目标进行预训练的模型都可以完成这两个任务,而预先训练的持续训练的模型却没有。最后,我们展示了如何轻松地对FITB模型进行填充,以允许对一代的长度和单词选择进行细粒度的控制。
translated by 谷歌翻译
Naturally-occurring information-seeking questions often contain questionable assumptions -- assumptions that are false or unverifiable. Questions containing questionable assumptions are challenging because they require a distinct answer strategy that deviates from typical answers to information-seeking questions. For instance, the question "When did Marie Curie discover Uranium?" cannot be answered as a typical when question without addressing the false assumption "Marie Curie discovered Uranium". In this work, we propose (QA)$^2$ (Question Answering with Questionable Assumptions), an open-domain evaluation dataset consisting of naturally-occurring search engine queries that may or may not contain questionable assumptions. To be successful on (QA)$^2$, systems must be able to detect questionable assumptions and also be able to produce adequate responses for both typical information-seeking questions and ones with questionable assumptions. We find that current models do struggle with handling questionable assumptions -- the best performing model achieves 59% human rater acceptability on abstractive QA with (QA)$^2$ questions, leaving substantial headroom for progress.
translated by 谷歌翻译
可解释的NLP(EXNLP)越来越关注收集人类注释的文本解释。这些解释在三种方面使用下游:作为数据增强,以提高预测任务的性能,因为对培训模型的监督,为他们的预测产生解释,以及评估模型生成的解释的理论。在本次审查中,我们识别65个具有三个主要类别的文本解释的数据集(突出显示,自由文本和结构),组织关于注释每种类型的文献,识别现有收集方法的优势和缺点,并为收集EXNLP数据集提供建议在将来。
translated by 谷歌翻译
Current large language models can perform reasonably well on complex tasks that require step-by-step reasoning with few-shot learning. Are these models applying reasoning skills they have learnt during pre-training and reason outside of their training context, or are they simply memorizing their training corpus at finer granularity and have learnt to better understand their context? To tease apart these possibilities, we introduce ALERT, a benchmark and suite of analyses for assessing language models' reasoning ability comparing pre-trained and finetuned models on complex tasks that require reasoning skills to solve. ALERT provides a test bed to asses any language model on fine-grained reasoning skills, which spans over 20 datasets and covers 10 different reasoning skills. We leverage ALERT to further investigate the role of finetuning. With extensive empirical analysis we find that language models learn more reasoning skills such as textual entailment, abductive reasoning, and analogical reasoning during finetuning stage compared to pretraining state. We also find that when language models are finetuned they tend to overfit to the prompt template, which hurts the robustness of models causing generalization problems.
translated by 谷歌翻译