时间序列分析已在网络安全,环境监测和医学信息学等不同应用中取得了巨大成功。在不同时间序列之间学习相似性是一个关键问题,因为它是下游分析(例如聚类和异常检测)的基础。由于事件触发的传感产生的时间序列的复杂时间动态,通常不清楚哪种距离度量适合相似性学习,这在各种应用中很常见,包括自动驾驶,交互式医疗保健和智能家庭自动化。本文的总体目标是开发一个无监督的学习框架,该框架能够在未标记的事件触发时间序列中学习任务感知的相似性。从机器学习有利位置,提出的框架可以利用层次多尺度序列自动编码器和高斯混合模型(GMM)的功能,以有效地学习时间序列的低维表示。最后,可以轻松地将获得的相似性度量可视化以进行解释。拟议的框架渴望提供一块垫脚石,从而产生一种系统的模型方法,以在许多事件触发的时间序列中学习相似之处。通过广泛的定性和定量实验,揭示了所提出的方法的表现大大优于最先进的方法。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
在智能交通系统中,交通拥堵异常检测至关重要。运输机构的目标有两个方面:监视感兴趣领域的一般交通状况,并在异常拥堵状态下定位道路细分市场。建模拥塞模式可以实现这些目标,以实现全市道路的目标,相当于学习多元时间序列(MTS)的分布。但是,现有作品要么不可伸缩,要么无法同时捕获MTS中的空间信息。为此,我们提出了一个由数据驱动的生成方法组成的原则性和全面的框架,该方法可以执行可拖动的密度估计来检测流量异常。我们的方法在特征空间中的第一群段段,然后使用条件归一化流以在无监督的设置下在群集级别识别异常的时间快照。然后,我们通过在异常群集上使用内核密度估计器来识别段级别的异常。关于合成数据集的广泛实验表明,我们的方法在召回和F1得分方面显着优于几种最新的拥塞异常检测和诊断方法。我们还使用生成模型来采样标记的数据,该数据可以在有监督的环境中训练分类器,从而减轻缺乏在稀疏设置中进行异常检测的标记数据。
translated by 谷歌翻译
作为在Internet交换路由到达性信息的默认协议,边界网关协议(BGP)的流量异常行为与互联网异常事件密切相关。 BGP异常检测模型通过其实时监控和警报功能确保互联网上的稳定路由服务。以前的研究要么专注于特征选择问题或数据中的内存特征,同时忽略特征之间的关系和特征中的精确时间相关(无论是长期还是短期依赖性)。在本文中,我们提出了一种用于捕获来自BGP更新流量的异常行为的多视图模型,其中使用黄土(STL)方法的季节性和趋势分解来减少原始时间序列数据中的噪声和图表网络中的噪声(GAT)用于分别发现功能中的特征关系和时间相关性。我们的结果优于异常检测任务的最先进的方法,平均F1分别在平衡和不平衡数据集上得分高达96.3%和93.2%。同时,我们的模型可以扩展以对多个异常进行分类并检测未知事件。
translated by 谷歌翻译
Aiot技术的最新进展导致利用机器学习算法来检测网络物理系统(CPS)的操作失败的越来越受欢迎。在其基本形式中,异常检测模块从物理工厂监控传感器测量和致动器状态,并检测这些测量中的异常以识别异常操作状态。然而,由于该模型必须在存在高度复杂的系统动态和未知量的传感器噪声的情况下准确地检测异常,构建有效的异常检测模型是挑战性的。在这项工作中,我们提出了一种新的时序序列异常检测方法,称为神经系统识别和贝叶斯滤波(NSIBF),其中特制的神经网络架构被构成系统识别,即捕获动态状态空间中CP的动态模型;然后,通过跟踪系统的隐藏状态的不确定性随着时间的推移,自然地施加贝叶斯滤波算法的顶部。我们提供定性的和定量实验,并在合成和三个现实世界CPS数据集上具有所提出的方法,表明NSIBF对最先进的方法比较了对CPS中异常检测的最新方法。
translated by 谷歌翻译
The Internet of Things (IoT) is a system that connects physical computing devices, sensors, software, and other technologies. Data can be collected, transferred, and exchanged with other devices over the network without requiring human interactions. One challenge the development of IoT faces is the existence of anomaly data in the network. Therefore, research on anomaly detection in the IoT environment has become popular and necessary in recent years. This survey provides an overview to understand the current progress of the different anomaly detection algorithms and how they can be applied in the context of the Internet of Things. In this survey, we categorize the widely used anomaly detection machine learning and deep learning techniques in IoT into three types: clustering-based, classification-based, and deep learning based. For each category, we introduce some state-of-the-art anomaly detection methods and evaluate the advantages and limitations of each technique.
translated by 谷歌翻译
最近的研究表明,基于自动编码器的模型可以在异常检测任务上实现出色的性能,因为它们以无监督的方式适合复杂数据的能力出色。在这项工作中,我们提出了一种新型的基于自动编码器的模型,称为Stackvae-G,可以显着将效率和解释性带入多元时间序列异常检测。具体而言,我们通过使用权重共生方案的堆叠式重建来利用整个时间序列频道的相似性来减少学习模型的大小,并减轻培训数据中未知噪声的过度拟合。我们还利用图形学习模块来学习稀疏的邻接矩阵,以明确捕获多个时间序列通道之间的稳定相互关系结构,以便对相互关联的通道的可解释模式重建。结合了这两个模块,我们将堆叠式块VAE(变异自动编码器)与GNN(图神经网络)模型进行了多变量时间序列异常检测。我们对三个常用的公共数据集进行了广泛的实验,这表明我们的模型与最先进的模型相当(甚至更好)的性能,同时需要更少的计算和内存成本。此外,我们证明,通过模型学到的邻接矩阵可以准确捕获多个渠道之间的相互关系,并可以为失败诊断应用提供有价值的信息。
translated by 谷歌翻译
对于由硬件和软件组件组成的复杂分布式系统而言,异常检测是一个重要的问题。对此类系统的异常检测的要求和挑战的透彻理解对于系统的安全性至关重要,尤其是对于现实世界的部署。尽管有许多解决问题的研究领域和应用领域,但很少有人试图对这种系统进行深入研究。大多数异常检测技术是针对某些应用域的专门开发的,而其他检测技术则更为通用。在这项调查中,我们探讨了基于图的算法在复杂分布式异质系统中识别和减轻不同类型异常的重要潜力。我们的主要重点是在分布在复杂分布式系统上的异质计算设备上应用时,可深入了解图。这项研究分析,比较和对比该领域的最新研究文章。首先,我们描述了现实世界分布式系统的特征及其在复杂网络中的异常检测的特定挑战,例如数据和评估,异常的性质以及现实世界的要求。稍后,我们讨论了为什么可以在此类系统中利用图形以及使用图的好处。然后,我们将恰当地深入研究最先进的方法,并突出它们的优势和劣势。最后,我们评估和比较这些方法,并指出可能改进的领域。
translated by 谷歌翻译
时间序列的异常提供了各个行业的关键方案的见解,从银行和航空航天到信息技术,安全和医学。但是,由于异常的定义,经常缺乏标签以及此类数据中存在的极为复杂的时间相关性,因此识别时间序列数据中的异常尤其具有挑战性。LSTM自动编码器是基于长期短期内存网络的异常检测的编码器传统方案,该方案学会重建时间序列行为,然后使用重建错误来识别异常。我们将Denoising Architecture作为对该LSTM编码模型模型的补充,并研究其对现实世界以及人为生成的数据集的影响。我们证明了所提出的体系结构既提高了准确性和训练速度,从而使LSTM自动编码器更有效地用于无监督的异常检测任务。
translated by 谷歌翻译
在能源系统的数字化中,传感器和智能电表越来越多地用于监视生产,运行和需求。基于智能电表数据的异常检测对于在早期阶段识别潜在的风险和异常事件至关重要,这可以作为及时启动适当动作和改善管理的参考。但是,来自能源系统的智能电表数据通常缺乏标签,并且包含噪声和各种模式,而没有明显的周期性。同时,在不同的能量场景中对异常的模糊定义和高度复杂的时间相关性对异常检测构成了巨大的挑战。许多传统的无监督异常检测算法(例如基于群集或基于距离的模型)对噪声不强大,也不完全利用时间序列中的时间依赖性以及在多个变量(传感器)中的其他依赖关系。本文提出了一种基于带有注意机制的变异复发自动编码器的无监督异常检测方法。凭借来自智能电表的“肮脏”数据,我们的方法预示了缺失的值和全球异常,以在训练中缩小其贡献。本文与基于VAE的基线方法和其他四种无监督的学习方法进行了定量比较,证明了其有效性和优势。本文通过一项实际案例研究进一步验证了所提出的方法,该研究方法是检测工业加热厂的供水温度异常。
translated by 谷歌翻译
现代高性能计算(HPC)系统的复杂性日益增加,需要引入自动化和数据驱动的方法,以支持系统管理员为增加系统可用性的努力。异常检测是改善可用性不可或缺的一部分,因为它减轻了系统管理员的负担,并减少了异常和解决方案之间的时间。但是,对当前的最新检测方法进行了监督和半监督,因此它们需要具有异常的人体标签数据集 - 在生产HPC系统中收集通常是不切实际的。基于聚类的无监督异常检测方法,旨在减轻准确的异常数据的需求,到目前为止的性能差。在这项工作中,我们通过提出RUAD来克服这些局限性,RUAD是一种新型的无监督异常检测模型。 Ruad比当前的半监督和无监督的SOA方法取得了更好的结果。这是通过考虑数据中的时间依赖性以及在模型体系结构中包括长短期限内存单元的实现。提出的方法是根据tier-0系统(带有980个节点的Cineca的Marconi100的完整历史)评估的。 RUAD在半监督训练中达到曲线(AUC)下的区域(AUC)为0.763,在无监督的训练中达到了0.767的AUC,这改进了SOA方法,在半监督训练中达到0.747的AUC,无需训练的AUC和0.734的AUC在无处不在的AUC中提高了AUC。训练。它还大大优于基于聚类的当前SOA无监督的异常检测方法,其AUC为0.548。
translated by 谷歌翻译
无监督的异常检测旨在通过在正常数据上训练来建立模型以有效地检测看不见的异常。尽管以前的基于重建的方法取得了富有成效的进展,但由于两个危急挑战,他们的泛化能力受到限制。首先,训练数据集仅包含正常模式,这限制了模型泛化能力。其次,现有模型学到的特征表示通常缺乏代表性,妨碍了保持正常模式的多样性的能力。在本文中,我们提出了一种称为自适应存储器网络的新方法,具有自我监督的学习(AMSL)来解决这些挑战,并提高无监督异常检测中的泛化能力。基于卷积的AutoEncoder结构,AMSL包含一个自我监督的学习模块,以学习一般正常模式和自适应内存融合模块来学习丰富的特征表示。四个公共多变量时间序列数据集的实验表明,与其他最先进的方法相比,AMSL显着提高了性能。具体而言,在具有9亿个样本的最大帽睡眠阶段检测数据集上,AMSL以精度和F1分数\ TextBF {4} \%+优于第二个最佳基线。除了增强的泛化能力之外,AMSL还针对输入噪声更加强大。
translated by 谷歌翻译
时间序列的建模在各种应用中变得越来越重要。总体而言,数据通过遵循不同的模式而演变,这些模式通常是由不同的用户行为引起的。给定时间序列,我们定义了进化基因以捕获潜在用户行为,并描述行为如何导致时间序列的产生。特别是,我们提出了一个统一的框架,该框架通过学习分类器来识别片段的不同演化基因,并通过估计片段的分布来实现对抗发电机来实现进化基因。基于合成数据集和五个现实世界数据集的实验结果表明,我们的方法不仅可以实现良好的预测结果(例如,在F1方面 +10.56%),还可以提供结果的解释。
translated by 谷歌翻译
存在几种数据驱动方法,使我们的模型时间序列数据能够包括传统的基于回归的建模方法(即,Arima)。最近,在时间序列分析和预测的背景下介绍和探索了深度学习技术。询问的主要研究问题是在预测时间序列数据中的深度学习技术中的这些变化的性能。本文比较了两个突出的深度学习建模技术。比较了经常性的神经网络(RNN)长的短期记忆(LSTM)和卷积神经网络(CNN)基于基于TCN的时间卷积网络(TCN),并报告了它们的性能和训练时间。根据我们的实验结果,两个建模技术都表现了相当具有基于TCN的模型优于LSTM略微。此外,基于CNN的TCN模型比基于RNN的LSTM模型更快地构建了稳定的模型。
translated by 谷歌翻译
A new Lossy Causal Temporal Convolutional Neural Network Autoencoder for anomaly detection is proposed in this work. Our framework uses a rate-distortion loss and an entropy bottleneck to learn a compressed latent representation for the task. The main idea of using a rate-distortion loss is to introduce representation flexibility that ignores or becomes robust to unlikely events with distinctive patterns, such as anomalies. These anomalies manifest as unique distortion features that can be accurately detected in testing conditions. This new architecture allows us to train a fully unsupervised model that has high accuracy in detecting anomalies from a distortion score despite being trained with some portion of unlabelled anomalous data. This setting is in stark contrast to many of the state-of-the-art unsupervised methodologies that require the model to be only trained on "normal data". We argue that this partially violates the concept of unsupervised training for anomaly detection as the model uses an informed decision that selects what is normal from abnormal for training. Additionally, there is evidence to suggest it also effects the models ability at generalisation. We demonstrate that models that succeed in the paradigm where they are only trained on normal data fail to be robust when anomalous data is injected into the training. In contrast, our compression-based approach converges to a robust representation that tolerates some anomalous distortion. The robust representation achieved by a model using a rate-distortion loss can be used in a more realistic unsupervised anomaly detection scheme.
translated by 谷歌翻译
无监督的时间序列异常检测对各种域中目标系统的潜在故障有助于。当前的最新时间序列异常检测器主要集中于设计高级神经网络结构和新的重建/预测学习目标,以尽可能准确地学习数据正常(正常模式和行为)。但是,这些单级学习方法可以被训练数据中未知异常(即异常污染)所欺骗。此外,他们的正常学习也缺乏对感兴趣异常的知识。因此,他们经常学习一个有偏见的,不准确的正态边界。本文提出了一种新型的单级学习方法,称为校准的一级分类,以解决此问题。我们的单级分类器以两种方式进行校准:(1)通过适应性地惩罚不确定的预测,这有助于消除异常污染的影响,同时强调单级模型对一级模型有信心的预测,并通过区分正常情况来确定(2)来自本机异常示例的样本,这些样本是根据原始数据基于原始数据模拟真实时间序列异常行为的。这两个校准导致耐污染的,异常的单级学习,从而产生了显着改善的正态性建模。对六个现实世界数据集进行的广泛实验表明,我们的模型大大优于12个最先进的竞争对手,并获得了6%-31%的F1分数提高。源代码可在\ url {https://github.com/xuhongzuo/couta}中获得。
translated by 谷歌翻译
今天的网络世界难以多变量。在极端品种中收集的指标需要多变量算法以正确检测异常。然而,基于预测的算法,如被广泛证明的方法,通常在数据集中进行次优或不一致。一个关键的常见问题是他们努力成为一个尺寸适合的,但异常在自然中是独特的。我们提出了一种裁定到这种区别的方法。提出FMUAD - 一种基于预测,多方面,无监督的异常检测框架。FMUAD明确,分别捕获异常类型的签名性状 - 空间变化,时间变化和相关变化 - 与独立模块。然后,模块共同学习最佳特征表示,这是非常灵活和直观的,与类别中的大多数其他模型不同。广泛的实验表明我们的FMUAD框架始终如一地优于其他最先进的预测的异常探测器。
translated by 谷歌翻译
异常值是一个事件或观察,其被定义为不同于距群体的不规则距离的异常活动,入侵或可疑数据点。然而,异常事件的定义是主观的,取决于应用程序和域(能量,健康,无线网络等)。重要的是要尽可能仔细地检测异常事件,以避免基础设施故障,因为异常事件可能导致对基础设施的严重损坏。例如,诸如微电网的网络物理系统的攻击可以发起电压或频率不稳定性,从而损坏涉及非常昂贵的修复的智能逆变器。微电网中的不寻常活动可以是机械故障,行为在系统中发生变化,人体或仪器错误或恶意攻击。因此,由于其可变性,异常值检测(OD)是一个不断增长的研究领域。在本章中,我们讨论了使用AI技术的OD方法的进展。为此,通过多个类别引入每个OD模型的基本概念。广泛的OD方法分为六大类:基于统计,基于距离,基于密度的,基于群集的,基于学习的和合奏方法。对于每个类别,我们讨论最近最先进的方法,他们的应用领域和表演。之后,关于对未来研究方向的建议提供了关于各种技术的优缺点和挑战的简要讨论。该调查旨在指导读者更好地了解OD方法的最新进展,以便保证AI。
translated by 谷歌翻译
时间序列数据的积累和标签的不存在使时间序列异常检测(AD)是自我监督的深度学习任务。基于单拟合的方法只能触及整个正态性的某些方面,不足以检测各种异常。其中,AD采用的对比度学习方法总是选择正常的负面对,这是反对AD任务的目的。现有的基于多促进的方法通常是两阶段的,首先应用了训练过程,其目标可能与AD不同,因此性能受到预训练的表示的限制。本文提出了一种深层对比的单级异常检测方法(COCA),该方法结合了对比度学习和一级分类的正态性假设。关键思想是将表示和重建表示形式视为无阴性对比度学习的积极对,我们将其命名为序列对比。然后,我们应用了由不变性和方差项组成的对比度损失函数,前者同时优化了这两个假设的损失,后者则防止了超晶体崩溃。在四个现实世界中的时间序列数据集上进行的广泛实验表明,所提出的方法的卓越性能达到了最新。该代码可在https://github.com/ruiking04/coca上公开获得。
translated by 谷歌翻译
Anomaly detection on time series data is increasingly common across various industrial domains that monitor metrics in order to prevent potential accidents and economic losses. However, a scarcity of labeled data and ambiguous definitions of anomalies can complicate these efforts. Recent unsupervised machine learning methods have made remarkable progress in tackling this problem using either single-timestamp predictions or time series reconstructions. While traditionally considered separately, these methods are not mutually exclusive and can offer complementary perspectives on anomaly detection. This paper first highlights the successes and limitations of prediction-based and reconstruction-based methods with visualized time series signals and anomaly scores. We then propose AER (Auto-encoder with Regression), a joint model that combines a vanilla auto-encoder and an LSTM regressor to incorporate the successes and address the limitations of each method. Our model can produce bi-directional predictions while simultaneously reconstructing the original time series by optimizing a joint objective function. Furthermore, we propose several ways of combining the prediction and reconstruction errors through a series of ablation studies. Finally, we compare the performance of the AER architecture against two prediction-based methods and three reconstruction-based methods on 12 well-known univariate time series datasets from NASA, Yahoo, Numenta, and UCR. The results show that AER has the highest averaged F1 score across all datasets (a 23.5% improvement compared to ARIMA) while retaining a runtime similar to its vanilla auto-encoder and regressor components. Our model is available in Orion, an open-source benchmarking tool for time series anomaly detection.
translated by 谷歌翻译