In this paper we introduce a new method for text detection in natural images. The method comprises two contributions: First, a fast and scalable engine to generate synthetic images of text in clutter. This engine overlays synthetic text to existing background images in a natural way, accounting for the local 3D scene geometry. Second, we use the synthetic images to train a Fully-Convolutional Regression Network (FCRN) which efficiently performs text detection and bounding-box regression at all locations and multiple scales in an image. We discuss the relation of FCRN to the recently-introduced YOLO detector, as well as other end-toend object detection systems based on deep learning. The resulting detection network significantly out performs current methods for text detection in natural images, achieving an F-measure of 84.2% on the standard ICDAR 2013 benchmark. Furthermore, it can process 15 images per second on a GPU.
translated by 谷歌翻译
We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance.Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
We propose a single-shot approach for simultaneously detecting an object in an RGB image and predicting its 6D pose without requiring multiple stages or having to examine multiple hypotheses. Unlike a recently proposed single-shot technique for this task [11] that only predicts an approximate 6D pose that must then be refined, ours is accurate enough not to require additional post-processing. As a result, it is much faster -50 fps on a Titan X (Pascal) GPU -and more suitable for real-time processing. The key component of our method is a new CNN architecture inspired by [28,29] that directly predicts the 2D image locations of the projected vertices of the object's 3D bounding box. The object's 6D pose is then estimated using a PnP algorithm.For single object and multiple object pose estimation on the LINEMOD and OCCLUSION datasets, our approach substantially outperforms other recent 26] when they are all used without postprocessing. During post-processing, a pose refinement step can be used to boost the accuracy of these two methods, but at 10 fps or less, they are much slower than our method.
translated by 谷歌翻译
Previous approaches for scene text detection have already achieved promising performances across various benchmarks. However, they usually fall short when dealing with challenging scenarios, even when equipped with deep neural network models, because the overall performance is determined by the interplay of multiple stages and components in the pipelines. In this work, we propose a simple yet powerful pipeline that yields fast and accurate text detection in natural scenes. The pipeline directly predicts words or text lines of arbitrary orientations and quadrilateral shapes in full images, eliminating unnecessary intermediate steps (e.g., candidate aggregation and word partitioning), with a single neural network. The simplicity of our pipeline allows concentrating efforts on designing loss functions and neural network architecture. Experiments on standard datasets including ICDAR 2015, COCO-Text and MSRA-TD500 demonstrate that the proposed algorithm significantly outperforms state-of-the-art methods in terms of both accuracy and efficiency. On the ICDAR 2015 dataset, the proposed algorithm achieves an F-score of 0.7820 at 13.2fps at 720p resolution.
translated by 谷歌翻译
Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012-achieving a mAP of 53.3%. Our approach combines two key insights:(1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also compare R-CNN to OverFeat, a recently proposed sliding-window detector based on a similar CNN architecture. We find that R-CNN outperforms OverFeat by a large margin on the 200-class ILSVRC2013 detection dataset. Source code for the complete system is available at http://www.cs.berkeley.edu/ ˜rbg/rcnn.
translated by 谷歌翻译
State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with "attention" mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
translated by 谷歌翻译
任意形状的文本检测是一项具有挑战性的任务,这是由于大小和宽高比,任意取向或形状,不准确的注释等各种变化的任务。最近引起了大量关注。但是,文本的准确像素级注释是强大的,现有的场景文本检测数据集仅提供粗粒的边界注释。因此,始终存在大量错误分类的文本像素或背景像素,从而降低基于分割的文本检测方法的性能。一般来说,像素是否属于文本与与相邻注释边界的距离高度相关。通过此观察,在本文中,我们通过概率图提出了一种创新且可靠的基于分割的检测方法,以准确检测文本实例。为了具体,我们采用Sigmoid alpha函数(SAF)将边界及其内部像素之间的距离传输到概率图。但是,由于粗粒度文本边界注释的不确定性,一个概率图无法很好地覆盖复杂的概率分布。因此,我们采用一组由一系列Sigmoid alpha函数计算出的概率图来描述可能的概率分布。此外,我们提出了一个迭代模型,以学习预测和吸收概率图,以提供足够的信息来重建文本实例。最后,采用简单的区域生长算法来汇总概率图以完成文本实例。实验结果表明,我们的方法在几个基准的检测准确性方面实现了最先进的性能。
translated by 谷歌翻译
We present an integrated framework for using Convolutional Networks for classification, localization and detection. We show how a multiscale and sliding window approach can be efficiently implemented within a ConvNet. We also introduce a novel deep learning approach to localization by learning to predict object boundaries. Bounding boxes are then accumulated rather than suppressed in order to increase detection confidence. We show that different tasks can be learned simultaneously using a single shared network. This integrated framework is the winner of the localization task of the ImageNet Large Scale Visual Recognition Challenge 2013 (ILSVRC2013) and obtained very competitive results for the detection and classifications tasks. In post-competition work, we establish a new state of the art for the detection task. Finally, we release a feature extractor from our best model called OverFeat.
translated by 谷歌翻译
场景文本图像综合技术旨在自然构成背景场景上的文本实例,非常吸引训练深神经网络,因为它们可以提供准确而全面的注释信息。先前的研究探索了基于实际观察结果的规则,在二维和三维表面上生成了合成文本图像。其中一些研究提出了从学习中生成场景文本图像。但是,由于缺乏合适的培训数据集,已经探索了无监督的框架,以从现有的现实世界数据中学习,这可能不会导致强大的性能。为了缓解这一难题并促进基于学习的场景文本综合研究,我们建议使用公共基准准备的真实世界数据集,并具有三种注释:四边形级别的bbox,streoke-level文本掩码和文本屏蔽词图片。使用Depompst数据集,我们提出了一个图像合成引擎,其中包括文本位置建议网络(TLPNET)和文本外观适应网络(TAANET)。 TLPNET首先预测适合文本嵌入的区域。然后,taanet根据背景的上下文自适应地改变文本实例的几何形状和颜色。我们的全面实验验证了提出的方法为场景文本检测器生成预浏览数据的有效性。
translated by 谷歌翻译
Recently, models based on deep neural networks have dominated the fields of scene text detection and recognition. In this paper, we investigate the problem of scene text spotting, which aims at simultaneous text detection and recognition in natural images. An end-to-end trainable neural network model for scene text spotting is proposed. The proposed model, named as Mask TextSpotter, is inspired by the newly published work Mask R-CNN. Different from previous methods that also accomplish text spotting with end-to-end trainable deep neural networks, Mask TextSpotter takes advantage of simple and smooth end-to-end learning procedure, in which precise text detection and recognition are acquired via semantic segmentation. Moreover, it is superior to previous methods in handling text instances of irregular shapes, for example, curved text. Experiments on ICDAR2013, ICDAR2015 and Total-Text demonstrate that the proposed method achieves state-of-the-art results in both scene text detection and end-to-end text recognition tasks.
translated by 谷歌翻译
We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. SSD is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stages and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, COCO, and ILSVRC datasets confirm that SSD has competitive accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. For 300 × 300 input, SSD achieves 74.3% mAP 1 on VOC2007 test at 59 FPS on a Nvidia Titan X and for 512 × 512 input, SSD achieves 76.9% mAP, outperforming a comparable state-of-the-art Faster R-CNN model. Compared to other single stage methods, SSD has much better accuracy even with a smaller input image size. Code is available at: https://github.com/weiliu89/caffe/tree/ssd .
translated by 谷歌翻译
The PASCAL Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection.This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.
translated by 谷歌翻译
场景文本检测的具有挑战性的领域需要复杂的数据注释,这是耗时和昂贵的。弱监管等技术可以减少所需的数据量。本文提出了一种薄弱的现场文本检测监控方法,这是利用加强学习(RL)。RL代理收到的奖励由神经网络估算,而不是从地面真理标签推断出来。首先,我们增强了具有多种培训优化的文本检测的现有监督RL方法,允许我们将性能差距缩放到基于回归的算法。然后,我们将拟议的系统在现实世界数据的漏洞和半监督培训中使用。我们的结果表明,在弱监督环境中培训是可行的。但是,我们发现在半监督设置中使用我们的模型,例如,将标记的合成数据与未经发布的实际数据相结合,产生最佳结果。
translated by 谷歌翻译
We aim to detect all instances of a category in an image and, for each instance, mark the pixels that belong to it. We call this task Simultaneous Detection and Segmentation (SDS). Unlike classical bounding box detection, SDS requires a segmentation and not just a box. Unlike classical semantic segmentation, we require individual object instances. We build on recent work that uses convolutional neural networks to classify category-independent region proposals (R-CNN [16]), introducing a novel architecture tailored for SDS. We then use category-specific, topdown figure-ground predictions to refine our bottom-up proposals. We show a 7 point boost (16% relative) over our baselines on SDS, a 5 point boost (10% relative) over state-of-the-art on semantic segmentation, and state-of-the-art performance in object detection. Finally, we provide diagnostic tools that unpack performance and provide directions for future work.
translated by 谷歌翻译
In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality. While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object detection datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN. To facilitate future research, two implementations are made available at https://github.com/zhaoweicai/cascade-rcnn (Caffe) and https://github.com/zhaoweicai/Detectron-Cascade-RCNN (Detectron).
translated by 谷歌翻译
我们介绍了一种名为RobustAbnet的新表检测和结构识别方法,以检测表的边界并从异质文档图像中重建每个表的细胞结构。为了进行表检测,我们建议将Cornernet用作新的区域建议网络来生成更高质量的表建议,以更快的R-CNN,这显着提高了更快的R-CNN的定位准确性以进行表检测。因此,我们的表检测方法仅使用轻巧的RESNET-18骨干网络,在三个公共表检测基准(即CTDAR TRACKA,PUBLAYNET和IIIT-AR-13K)上实现最新性能。此外,我们提出了一种新的基于分裂和合并的表结构识别方法,其中提出了一个新型的基于CNN的新空间CNN分离线预测模块将每个检测到的表分为单元格,并且基于网格CNN的CNN合并模块是应用用于恢复生成细胞。由于空间CNN模块可以有效地在整个表图像上传播上下文信息,因此我们的表结构识别器可以坚固地识别具有较大的空白空间和几何扭曲(甚至弯曲)表的表。得益于这两种技术,我们的表结构识别方法在包括SCITSR,PubTabnet和CTDAR TrackB2-Modern在内的三个公共基准上实现了最先进的性能。此外,我们进一步证明了我们方法在识别具有复杂结构,大空间以及几何扭曲甚至弯曲形状的表上的表格上的优势。
translated by 谷歌翻译
Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But recent deep learning object detectors have avoided pyramid representations, in part because they are compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A topdown architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using FPN in a basic Faster R-CNN system, our method achieves state-of-the-art singlemodel results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 6 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.
translated by 谷歌翻译
Fast R-CNN
Ross Girshick
分类:
2015-04-30
This paper proposes a Fast Region-based Convolutional Network method (Fast R-CNN) for object detection. Fast R-CNN builds on previous work to efficiently classify object proposals using deep convolutional networks. Compared to previous work, Fast R-CNN employs several innovations to improve training and testing speed while also increasing detection accuracy. Fast R-CNN trains the very deep VGG16 network 9× faster than R-CNN, is 213× faster at test-time, and achieves a higher mAP on PASCAL VOC 2012. Compared to SPPnet, Fast R-CNN trains VGG16 3× faster, tests 10× faster, and is more accurate. Fast R-CNN is implemented in Python and C++ (using Caffe) and is available under the open-source MIT License at https: //github.com/rbgirshick/fast-rcnn.
translated by 谷歌翻译
Furigana是日语写作中使用的发音笔记。能够检测到这些可以帮助提高光学特征识别(OCR)性能,或通过正确显示Furigana来制作日本书面媒体的更准确的数字副本。该项目的重点是在日本书籍和漫画中检测Furigana。尽管已经研究了日本文本的检测,但目前尚无提议检测Furigana的方法。我们构建了一个包含日本书面媒体和Furigana注释的新数据集。我们建议对此类数据的评估度量,该度量与对象检测中使用的评估协议类似,除非它允许对象组通过一个注释标记。我们提出了一种基于数学形态和连接组件分析的Furigana检测方法。我们评估数据集的检测,并比较文本提取的不同方法。我们还分别评估了不同类型的图像,例如书籍和漫画,并讨论每种图像的挑战。所提出的方法在数据集上达到76 \%的F1得分。该方法在常规书籍上表现良好,但在漫画和不规则格式的书籍上的表现较少。最后,我们证明所提出的方法可以在漫画109数据集上提高OCR的性能5 \%。源代码可通过\ texttt {\ url {https://github.com/nikolajkb/furiganadetection}}}
translated by 谷歌翻译