Defocus Blur是大多数相机中使用的光学传感器的物理后果。尽管它可以用作摄影风格,但通常被视为图像降解,以形成模型的尖锐图像,并具有空间变化的模糊内核。在过去几年的模糊估计方法的推动下,我们提出了一种非盲方法来处理图像脱毛的方法,可以处理空间变化的核。我们介绍了两个编码器子网络网络,它们分别用模糊图像和估计的模糊图,并作为输出作为输出(Deconvolved)图像的输出。每个子网络都会呈现几个跳过连接,这些连接允许分开分开的数据传播,还可以通过划线跳过连接,以简化模块之间的通信。该网络经过合成的模糊内核训练,这些核被增强以模拟现有模糊估计方法产生的模糊图,我们的实验结果表明,当与多种模糊估计方法结合使用时,我们的方法很好地工作。
translated by 谷歌翻译
本文介绍了一种来自单个离焦图像的边缘散焦模糊估计方法。我们首先将位于深度不连续(称为深度边缘的边缘)的边缘区分从近似恒定的深度区域(称为模糊估计的被称为模糊估计的图案边缘)的边缘中的深度不连续性(含义模糊估计是模糊的)。然后,我们仅估计图案边缘的散焦模糊量,并探索基于引导滤波器的内插方案,该导向滤波器防止检测到的深度边缘的数据传播,以获得具有明确定义的对象边界的密集模糊图。两个任务(边缘分类和模糊估计)由深度卷积神经网络(CNNS)执行,该网络(CNN)共享权重以从边缘位置为中心的多尺度补丁学习有意义的本地特征。在自然散焦的图像上的实验表明,该方法提出了优异的最先进(SOTA)方法的定性和定量结果,在运行时间和准确度之间具有良好的折衷。
translated by 谷歌翻译
在本文中,我们考虑了Defocus图像去缩合中的问题。以前的经典方法遵循两步方法,即首次散焦映射估计,然后是非盲目脱毛。在深度学习时代,一些研究人员试图解决CNN的这两个问题。但是,代表模糊级别的Defocus图的简单串联导致了次优性能。考虑到Defocus Blur的空间变体特性和Defocus Map中指示的模糊级别,我们采用Defocus Map作为条件指导来调整输入模糊图像而不是简单串联的特征。然后,我们提出了一个基于Defocus图的空间调制的简单但有效的网络。为了实现这一目标,我们设计了一个由三个子网络组成的网络,包括DeFocus Map估计网络,该网络将DeFocus Map编码为条件特征的条件网络以及根据条件功能执行空间动态调制的DeFocus Deblurring网络。此外,空间动态调制基于仿射变换函数,以调整输入模糊图像的特征。实验结果表明,与常用的公共测试数据集中的现有最新方法相比,我们的方法可以实现更好的定量和定性评估性能。
translated by 谷歌翻译
大多数现有的基于深度学习的单图像动态场景盲目脱毛(SIDSBD)方法通常设计深网络,以直接从一个输入的运动模糊图像中直接删除空间变化的运动模糊,而无需模糊的内核估计。在本文中,受投射运动路径模糊(PMPB)模型和可变形卷积的启发,我们提出了一个新颖的约束可变形的卷积网络(CDCN),以进行有效的单图像动态场景,同时实现了准确的空间变化,以及仅观察到的运动模糊图像的高质量图像恢复。在我们提出的CDCN中,我们首先构建了一种新型的多尺度多级多输入多输出(MSML-MIMO)编码器架构,以提高功能提取能力。其次,与使用多个连续帧的DLVBD方法不同,提出了一种新颖的约束可变形卷积重塑(CDCR)策略,其中首先将可变形的卷积应用于输入的单运动模糊图像的模糊特征,用于学习学习的抽样点,以学习学习的采样点每个像素的运动模糊内核类似于PMPB模型中摄像机震动的运动密度函数的估计,然后提出了一种基于PMPB的新型重塑损耗函数来限制学习的采样点收敛,这可以使得可以使得可以使其产生。学习的采样点与每个像素的相对运动轨迹匹配,并促进空间变化的运动模糊内核估计的准确性。
translated by 谷歌翻译
散焦模糊是图像中经常看到的一种模糊效果,这是由于其空间变体的量而挑战。本文介绍了一种用于从单个图像中移除散焦模糊的端到端深度学习方法,以便具有随之而来的视觉任务的全焦点图像。首先,提出了一种用于以有效的线性参数形式表示空间变体散焦模糊核的像素 - WISE高斯核混合物(GKM)模型,其比现有模型更高。然后,通过展开基于GKM的去纹理的定点迭代来开发称为GKMNet的深神经网络。 GKMNET构建在轻量级刻度 - 重复间体系结构上,具有比例 - 复制注意力模块,用于估计GKM中的混合系数用于散焦去孔。广泛的实验表明,GKMNET不仅明显优于现有的散焦去纹理方法,而且还具有其在模型复杂性和计算效率方面的优势。
translated by 谷歌翻译
非盲折叠是一个不良问题。大多数现有方法通常将该问题与最大-A-Bouthiori框架制定,并通过设计潜在清晰图像的类型的正则化术语和数据项来解决它。在本文中,我们通过学习鉴别性收缩函数来提出有效的非盲折叠方法来隐含地模拟这些术语。与使用深度卷积神经网络(CNNS)或径向基函数的大多数现有方法来说,我们简单地学习正则化术语,我们制定数据项和正则化术语,并将解构模型分成与数据相关和正则化相关的子 - 根据乘法器的交替方向方法问题。我们探讨了Maxout函数的属性,并使用颤扬层开发一个深入的CNN模型,以学习直接近似对这两个子问题的解决方案的判别缩小功能。此外,考虑到基于快速的傅里叶变换的图像恢复通常导致振铃伪像,而基于共轭梯度的图像恢复是耗时的,我们开发共轭梯度网络以有效且有效地恢复潜在的清晰图像。实验结果表明,该方法在效率和准确性方面对最先进的方法有利地执行。
translated by 谷歌翻译
在各种基于学习的图像恢复任务(例如图像降解和图像超分辨率)中,降解表示形式被广泛用于建模降解过程并处理复杂的降解模式。但是,在基于学习的图像deblurring中,它们的探索程度较低,因为在现实世界中挑战性的情况下,模糊内核估计不能很好地表现。我们认为,对于图像降低的降解表示形式是特别必要的,因为模糊模式通常显示出比噪声模式或高频纹理更大的变化。在本文中,我们提出了一个框架来学习模糊图像的空间自适应降解表示。提出了一种新颖的联合图像re毁和脱蓝色的学习过程,以提高降解表示的表现力。为了使学习的降解表示有效地启动和降解,我们提出了一个多尺度退化注入网络(MSDI-NET),以将它们集成到神经网络中。通过集成,MSDI-NET可以适应各种复杂的模糊模式。 GoPro和Realblur数据集上的实验表明,我们提出的具有学识渊博的退化表示形式的Deblurring框架优于最先进的方法,具有吸引人的改进。该代码在https://github.com/dasongli1/learning_degradation上发布。
translated by 谷歌翻译
Multi-Scale and U-shaped Networks are widely used in various image restoration problems, including deblurring. Keeping in mind the wide range of applications, we present a comparison of these architectures and their effects on image deblurring. We also introduce a new block called as NFResblock. It consists of a Fast Fourier Transformation layer and a series of modified Non-Linear Activation Free Blocks. Based on these architectures and additions, we introduce NFResnet and NFResnet+, which are modified multi-scale and U-Net architectures, respectively. We also use three different loss functions to train these architectures: Charbonnier Loss, Edge Loss, and Frequency Reconstruction Loss. Extensive experiments on the Deep Video Deblurring dataset, along with ablation studies for each component, have been presented in this paper. The proposed architectures achieve a considerable increase in Peak Signal to Noise (PSNR) ratio and Structural Similarity Index (SSIM) value.
translated by 谷歌翻译
盲目解构是一种在各种田地中产生的不良问题,从显微镜到天文学。问题的不良性质需要足够的前沿到达理想的解决方案。最近,已经表明,深度学习架构可以用作在无监督盲卷积优化期间的图像生成,然而甚至在单个图像上也呈现性能波动。我们建议使用Wiener-Deconvolulation在优化期间通过从高斯开始使用辅助内核估计来指导图像发生器在优化期间。我们观察到与低频特征相比,通过延迟再现去卷积的高频伪影。另外,图像发生器从模糊图像的速度再现解码图像的低频特征。我们在约束的优化框架中嵌入计算过程,并表明该方法在多个数据集中产生更高的稳定性和性能。此外,我们提供代码。
translated by 谷歌翻译
Non-uniform blind deblurring for general dynamic scenes is a challenging computer vision problem as blurs arise not only from multiple object motions but also from camera shake, scene depth variation. To remove these complicated motion blurs, conventional energy optimization based methods rely on simple assumptions such that blur kernel is partially uniform or locally linear. Moreover, recent machine learning based methods also depend on synthetic blur datasets generated under these assumptions. This makes conventional deblurring methods fail to remove blurs where blur kernel is difficult to approximate or parameterize (e.g. object motion boundaries). In this work, we propose a multi-scale convolutional neural network that restores sharp images in an end-to-end manner where blur is caused by various sources. Together, we present multiscale loss function that mimics conventional coarse-to-fine approaches. Furthermore, we propose a new large-scale dataset that provides pairs of realistic blurry image and the corresponding ground truth sharp image that are obtained by a high-speed camera. With the proposed model trained on this dataset, we demonstrate empirically that our method achieves the state-of-the-art performance in dynamic scene deblurring not only qualitatively, but also quantitatively.
translated by 谷歌翻译
近年来,基于神经网络的深度恢复方法已实现了最先进的方法,从而导致了各种图像过度的任务。但是,基于深度学习的Deblurring网络的一个主要缺点是,训练需要大量模糊清洁图像对才能实现良好的性能。此外,当测试过程中的模糊图像和模糊内核与训练过程中使用的图像和模糊内核时,深层网络通常无法表现良好。这主要是因为网络参数在培训数据上过度拟合。在这项工作中,我们提出了一种解决这些问题的方法。我们将非盲图像脱毛问题视为一个脱氧问题。为此,我们在一对模糊图像上使用相应的模糊内核进行Wiener过滤。这导致一对具有彩色噪声的图像。因此,造成造成的问题被转化为一个降解问题。然后,我们在不使用明确的清洁目标图像的情况下解决了降解问题。进行了广泛的实验,以表明我们的方法取得了与最先进的非盲人脱毛作品相提并论的结果。
translated by 谷歌翻译
Existing convolutional neural networks (CNN) based image super-resolution (SR) methods have achieved impressive performance on bicubic kernel, which is not valid to handle unknown degradations in real-world applications. Recent blind SR methods suggest to reconstruct SR images relying on blur kernel estimation. However, their results still remain visible artifacts and detail distortion due to the estimation errors. To alleviate these problems, in this paper, we propose an effective and kernel-free network, namely DSSR, which enables recurrent detail-structure alternative optimization without blur kernel prior incorporation for blind SR. Specifically, in our DSSR, a detail-structure modulation module (DSMM) is built to exploit the interaction and collaboration of image details and structures. The DSMM consists of two components: a detail restoration unit (DRU) and a structure modulation unit (SMU). The former aims at regressing the intermediate HR detail reconstruction from LR structural contexts, and the latter performs structural contexts modulation conditioned on the learned detail maps at both HR and LR spaces. Besides, we use the output of DSMM as the hidden state and design our DSSR architecture from a recurrent convolutional neural network (RCNN) view. In this way, the network can alternatively optimize the image details and structural contexts, achieving co-optimization across time. Moreover, equipped with the recurrent connection, our DSSR allows low- and high-level feature representations complementary by observing previous HR details and contexts at every unrolling time. Extensive experiments on synthetic datasets and real-world images demonstrate that our method achieves the state-of-the-art against existing methods. The source code can be found at https://github.com/Arcananana/DSSR.
translated by 谷歌翻译
深度信息在许多图像处理应用程序中是有用的。然而,由于拍摄图像是在2D成像传感器上投射3D场景的过程,因此深度信息嵌入图像中。从图像中提取深度信息是一个具有挑战性的任务。引导原理是由于散焦引起的蓝色水平与物体和焦平面之间的距离有关。基于该原理和广泛使用的假设,即高斯模糊是散焦模糊的良好模型,我们制定了作为高斯模糊分类问题的空间变化散焦模糊的问题。我们通过培训深度神经网络来解决图像补丁中的20级蓝色蓝色之一来解决问题。我们创建了一个超过500000美元的尺寸为32 \ times32 $的数据集,用于培训和测试几种知名网络模型。我们发现MobileNetv2由于其较低的内存要求和高精度而适用于此应用。训练模型用于确定通过施加迭代加权引导滤波器来改进的贴剂模糊。结果是散焦图,其携带每个像素的模糊度的信息。我们将提出的方法与最先进的技术进行比较,我们展示了其在自适应图像增强,散焦倍率和多聚焦图像融合中的成功应用。
translated by 谷歌翻译
Recent years have witnessed the unprecedented success of deep convolutional neural networks (CNNs) in single image super-resolution (SISR). However, existing CNN-based SISR methods mostly assume that a low-resolution (LR) image is bicubicly downsampled from a high-resolution (HR) image, thus inevitably giving rise to poor performance when the true degradation does not follow this assumption. Moreover, they lack scalability in learning a single model to nonblindly deal with multiple degradations. To address these issues, we propose a general framework with dimensionality stretching strategy that enables a single convolutional super-resolution network to take two key factors of the SISR degradation process, i.e., blur kernel and noise level, as input. Consequently, the super-resolver can handle multiple and even spatially variant degradations, which significantly improves the practicability. Extensive experimental results on synthetic and real LR images show that the proposed convolutional super-resolution network not only can produce favorable results on multiple degradations but also is computationally efficient, providing a highly effective and scalable solution to practical SISR applications.
translated by 谷歌翻译
Convolutional Neural Network (CNN)-based image super-resolution (SR) has exhibited impressive success on known degraded low-resolution (LR) images. However, this type of approach is hard to hold its performance in practical scenarios when the degradation process is unknown. Despite existing blind SR methods proposed to solve this problem using blur kernel estimation, the perceptual quality and reconstruction accuracy are still unsatisfactory. In this paper, we analyze the degradation of a high-resolution (HR) image from image intrinsic components according to a degradation-based formulation model. We propose a components decomposition and co-optimization network (CDCN) for blind SR. Firstly, CDCN decomposes the input LR image into structure and detail components in feature space. Then, the mutual collaboration block (MCB) is presented to exploit the relationship between both two components. In this way, the detail component can provide informative features to enrich the structural context and the structure component can carry structural context for better detail revealing via a mutual complementary manner. After that, we present a degradation-driven learning strategy to jointly supervise the HR image detail and structure restoration process. Finally, a multi-scale fusion module followed by an upsampling layer is designed to fuse the structure and detail features and perform SR reconstruction. Empowered by such degradation-based components decomposition, collaboration, and mutual optimization, we can bridge the correlation between component learning and degradation modelling for blind SR, thereby producing SR results with more accurate textures. Extensive experiments on both synthetic SR datasets and real-world images show that the proposed method achieves the state-of-the-art performance compared to existing methods.
translated by 谷歌翻译
使用注意机制的深度卷积神经网络(CNN)在动态场景中取得了巨大的成功。在大多数这些网络中,只能通过注意图精炼的功能传递到下一层,并且不同层的注意力图彼此分开,这并不能充分利用来自CNN中不同层的注意信息。为了解决这个问题,我们引入了一种新的连续跨层注意传播(CCLAT)机制,该机制可以利用所有卷积层的分层注意信息。基于CCLAT机制,我们使用非常简单的注意模块来构建一个新型残留的密集注意融合块(RDAFB)。在RDAFB中,从上述RDAFB的输出中推断出的注意图和每一层直接连接到后续的映射,从而导致CRLAT机制。以RDAFB为基础,我们为动态场景Deblurring设计了一个名为RDAFNET的有效体系结构。基准数据集上的实验表明,所提出的模型的表现优于最先进的脱毛方法,并证明了CCLAT机制的有效性。源代码可在以下网址提供:https://github.com/xjmz6/rdafnet。
translated by 谷歌翻译
大气湍流可以通过在大气折射索引中引起空间和时间随机的波动,从而显着降低远程成像系统获得的图像质量。折射率的变化导致捕获的图像几何扭曲和模糊。因此,重要的是要补偿由大气湍流引起的图像中的视觉降解。在本文中,我们提出了一种基于深度学习的方法,用于限制大气湍流降解的单个图像。我们利用基于蒙特卡洛辍学的认知不确定性来捕获网络很难恢复的图像中的区域。然后,使用估计的不确定性图来指导网络以获得还原图像。对合成图像和真实图像进行了广泛的实验,以显示拟议工作的重要性。代码可在以下网址找到:https://github.com/rajeevyasarla/at-net
translated by 谷歌翻译
在弱光环境下,手持式摄影在长时间的曝光设置下遭受了严重的相机震动。尽管现有的Deblurry算法在暴露良好的模糊图像上表现出了令人鼓舞的性能,但它们仍然无法应对低光快照。在实用的低光脱毛中,复杂的噪声和饱和区是两个主导挑战。在这项工作中,我们提出了一种称为图像的新型非盲脱毛方法,并具有特征空间Wiener Deonervolution网络(Infwide),以系统地解决这些问题。在算法设计方面,Infwide提出了一个两分支的架构,该体系结构明确消除了噪声并幻觉,使图像空间中的饱和区域抑制了特征空间中的响起文物,并将两个互补输出与一个微妙的多尺度融合网络集成在一起高质量的夜间照片浮雕。为了进行有效的网络培训,我们设计了一组损失功能,集成了前向成像模型和向后重建,以形成近环的正则化,以确保深神经网络的良好收敛性。此外,为了优化Infwide在实际弱光条件下的适用性,采用基于物理过程的低光噪声模型来合成现实的嘈杂夜间照片进行模型训练。利用传统的Wiener Deonervolution算法的身体驱动的特征并引起了深层神经网络的表示能力,Infwide可以恢复细节,同时抑制在脱毛期间的不愉快的人工制品。关于合成数据和实际数据的广泛实验证明了所提出的方法的出色性能。
translated by 谷歌翻译
In single image deblurring, the "coarse-to-fine" scheme, i.e. gradually restoring the sharp image on different resolutions in a pyramid, is very successful in both traditional optimization-based methods and recent neural-networkbased approaches. In this paper, we investigate this strategy and propose a Scale-recurrent Network (SRN-DeblurNet) for this deblurring task. Compared with the many recent learning-based approaches in [25], it has a simpler network structure, a smaller number of parameters and is easier to train. We evaluate our method on large-scale deblurring datasets with complex motion. Results show that our method can produce better quality results than state-of-thearts, both quantitatively and qualitatively.
translated by 谷歌翻译
Despite deep end-to-end learning methods have shown their superiority in removing non-uniform motion blur, there still exist major challenges with the current multi-scale and scale-recurrent models: 1) Deconvolution/upsampling operations in the coarse-to-fine scheme result in expensive runtime; 2) Simply increasing the model depth with finer-scale levels cannot improve the quality of deblurring. To tackle the above problems, we present a deep hierarchical multi-patch network inspired by Spatial Pyramid Matching to deal with blurry images via a fine-tocoarse hierarchical representation. To deal with the performance saturation w.r.t. depth, we propose a stacked version of our multi-patch model. Our proposed basic multi-patch model achieves the state-of-the-art performance on the Go-Pro dataset while enjoying a 40× faster runtime compared to current multi-scale methods. With 30ms to process an image at 1280×720 resolution, it is the first real-time deep motion deblurring model for 720p images at 30fps. For stacked networks, significant improvements (over 1.2dB) are achieved on the GoPro dataset by increasing the network depth. Moreover, by varying the depth of the stacked model, one can adapt the performance and runtime of the same network for different application scenarios.
translated by 谷歌翻译